PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the effect of specific plants on indoor carbon dioxide levels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Indoor environments, where people spend nearly 90% of their lives, significantly influence health and well-being through air quality, specifically carbon dioxide (CO2) concentrations. This study investigates the role of indoor plants in modulating CO2 levels under controlled light and temperature conditions. Three indoor plants – Bonsai, Dieffenbachia, and Yucca – were positioned inside a glass-walled compartment to prevent direct sunlight while providing sufficient illumination, simulating typical indoor light conditions. CO2 concentrations were monitored using CO2Datalogger, which recorded data every 5 minutes. The results demonstrate that all tested plants effectively reduced CO2concentrations, with Dieffenbachia showing the most substantial decrease, followed by Yucca and Bonsai. This research highlights the potential of indoor plants not only to enhance indoor air quality but also contribute to health and productivity by mitigating CO2 accumulation, offering a sustainable strategy to improve environmental conditions in indoor spaces.
Twórcy
autor
  • Department of Architecture, Faculty of Architecture and Design, Al-Zaytoonah University of Jordan, PO Box 130, Amman 11733, Jordan
  • Department of Mechanical Engineering, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, PO Box 130, Amman 11733, Jordan
Bibliografia
  • 1. Britton, E., Kindermann, G., Domegan, C., & Carlin, C. (2020). Blue care: A systematic review of blue space interventions for health and wellbeing. Health Promotion International, 35(1), 50–69. https://doi.org/10.1093/heapro/day103
  • 2. Bulgurcu H., Ilten N., & Cosgun A. (2006). Indoor air quality problems and solutions in schools. Journal of Installation Engineering. 96, 59 [In Turkish].
  • 3. Coventry P.A., Brown J.V.E., Pervin J., Brabyn S., Pateman R., Breedvelt J., Gilbody S., Stancliffe R., McEachan R., & White P.C.L. (2021). Nature-based outdoor activities for mental and physical health: Systematic review and meta-analysis. SSM Popul Health, 1(16), 1–14 https://doi.org/10.1016/j.ssmph.2021.100934
  • 4. Ercan M.S. (2012). Your compass green Environmental Indicator. X. International HVAC Technology Symposium, 169, 30 [In Turkish].
  • 5. Han, K.-T., Ruan, L.-W., & Liao, L.-S. (2022). Effects of indoor plants on human functions: A systematic review with Meta-analyses. International Journal of Environmental Research and Public Health, 19(12), 7454. https://doi.org/10.3390/ ijerph19127454
  • 6. Hartig T., Mang M., & Evans G.W. (1991). Restorative effects of natural environment experiences. Environment and Behavior, 23(1), 3–26. https://doi.org/10.1177/0013916591231001
  • 7. Hartig T., Mitchell R., de Vries S., & Frumkin H. (2014). Nature and health. Annu Rev. Public Health. 35, 207–228. https://doi.org/10.1146/annurev-publhealth-032013-182443
  • 8. Hashim, N. H., Teh, E. J., & Rosli, M. A. (2019). A Dynamic Botanical Air Purifier (DBAP) with activated carbon root-bed for reducing indoor carbon dioxide levels. IOP Conference Series: Earth and Environmental Science, 373(1), 012022. https://doi.org/10.1088/1755-1315/373/1/012022
  • 9. Kaplan R., & Kaplan S. (1989). The Experience of Nature: A Psychological Perspective. Cambridge University Press, New York.
  • 10. Kellert S.R., & Wilson E.O. (1993). The Biophilia Hypothesis. Island Press; Washington, DC.
  • 11. Mari, Tala, Hmood, F., & Goussous, J. (2022). Integrated built environment that meets human needs for thermal comfort. Civil Engineering and Architecture, 10(5), 2041–2053. https://doi.org/10.13189/ cea.2022.100525
  • 12. Menardo E., Brondino M., Hall R., & Pasini M. (2021). Restorativeness in natural and urban environments: A meta-analysis. Psychol. Rep. 124(2), 417– 437. https://doi.org/10.1177/0033294119884063
  • 13. Moya, T. A., van den Dobbelsteen, A., Ottelé, M., & Bluyssen, P. M. (2018). A review of Green Systems within the indoor environment. Indoor and Built Environment, 28(3), 298–309. https://doi.org/10.1177/1420326x18783042
  • 14. Nezis, I., Biskos, G., Eleftheriadis, K., Fetfatzis, P., Popovicheva, O., Sitnikov, N., & Kalantzi, O.-I. (2022). Linking indoor particulate matter and black carbon with sick building syndrome symptoms in a public office building. Atmospheric Pollution Research, 13(1), 101292. https://doi.org/10.1016/j.apr.2021.101292
  • 15. Nisitha, S., Balasubramani, G., & Paul Pradeep, J. (2023). Systemic Review on Indoor Plants as an Alternative Technique for Reducing Indoor Air Pollutants. Journal of Xidian University, 17(11), 1074–1083. https://doi.org/10.37896/jxu17.11/092
  • 16. Ohly H., White M.P., Wheeler B.W., Bethel A., Ukoumunne O.C., Nikolaou V., & Garside R. (2016). Attention Restoration Theory: A systematic review of attention potential of exposure to natural environments. J. Toxicol Environ Health, 19(7), 305–343. https://doi.org/10.1080/10937404.2016.1196155
  • 17. Sevik H., Karakas H., & Karaca U. (2013). Color – Chlorophyll relationship of some indoor ornamental plant. International Journal of Engineering Science & Research Technology, 2(7), 1706.
  • 18. Stevenson M.P., Schilhab T., & Bentsen P. (2018). Attention Restoration Theory II: A systematic review to clarify attention processes affected by exposure to natural environments. J. Toxicol Environ. 21, 227–268. https://doi.org/10.1080/10937404.20 18.1505571
  • 19. Su, Y.-M., & Lin, C.-H. (2015). Removal of indoor carbon dioxide and formaldehyde using green walls by bird nest fern. The Horticulture Journal, 84(1), 69–76. https://doi.org/10.2503/hortj.ch-114
  • 20. Susanto, A. D., Winardi, W., Hidayat, M., & Wirawan, A. (2020). The use of indoor plant as an alternative strategy to improve indoor air quality in Indonesia. Reviews on Environmental Health, 36(1), 95–99. https://doi.org/10.1515/reveh-2020-0062
  • 21. Twohig-Bennett C., & Jones A. (2019). The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res., 166, 626–637. https://doi.org/ 10.1016/j.envres.2018.06.030
  • 22. Ulrich R.S. (1983). Aesthetic and affective response to natural environment. In I. Altman, & J.F. Wohwill, (Eds), Behavior and the Natural Environment 85–125. Boston, MA: Springer US.
  • 23. Ulrich R.S., & Parsons R. (1992). Influences of passive experiences with plants on individual well-being and health. In P. Relt, (Ed.), The Role of Horticulture in Human Well-Being and Social Development 93–105. Timber Press; Portland, USA.
  • 24. Ulrich R.S., Simons R.F., Losito B.D., Fiorito E., Miles M.A., Zelson M., & Zel-son M., (1991). Stress recovery during exposure to natural and urban environments. Journal of Environmental Psychology, 11, 201–230. https://doi.org/10.1016/ S0272-4944(05)80184-7
  • 25. van den Bosch M., & Sang Å.O. (2017). Urban natural environments as nature-based solutions for improved public health - A systematic review of reviews. Environ. Res., 158, 373–384. https://doi.org/10.1016/j.envres.2017.05.040
  • 26. Wolverton, B.C., Johnson, A., & Bounds, K. (1989). Interior landscape plants for indoor air pollution abatement, Associated landscape contractors of America (ALCA).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c81f124-0397-4b8d-9eb3-9f4b2debe51a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.