PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of different optical properties for cubic titanium dioxide: an AB-INITIO approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of optical properties of cubic titanium dioxide (TiO2) using Orthogonalized Linear Combinations of Atomic Orbitals (OLCAO) basis set under the framework of Density Functional Theory (DFT). Many optical properties such as refractive index, extinction coefficient, reflectivity, absorption coefficient, photoconductivity, and loss coefficient have been studied and analyzed thoroughly. From the analysis of optical properties, it is seen that, cubic TiO2 supports interband transition between states. Reflectivity of pyrite structure TiO2 lies within IRvisible – UV region due to which it qualifies for coating industry. Furthermore, the results are compared with previous theoretical as well as with experimental results. It is found that DFT based simulation produces results which are close approximation to experimental results.
Twórcy
  • Department of Electrical Engineering, National Institute of Technology, Silchar, Assam, India
  • Department of Electrical Engineering, National Institute of Technology, Silchar, Assam, India
  • Department of Electrical Engineering, National Institute of Technology, Silchar, Assam, India
  • Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, Assam, India
Bibliografia
  • 1. Jian-Zhi Zhao, Wang Guang-Tao, Yong-Cheng Liang. Mechanical properties and electronic structure of cotunnite TiO2. Chin. Phys. Lett., 25, 2008, 4356.
  • 2. Landmann M., Rauls E. and Schmidt W.G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys.: Condens. Matter, 24, 2012, 195503.
  • 3. Wang Jin-Hua, Li Ze-Peng, Liu Bo, Liu Bing-Bing. Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure. Chinese Phys. B, 26(2), 2017, 026101.
  • 4. Fan Long by, Zhang Ping, Has Songyan, Wang Yuan Xu, Liu Ping day, Wang Wenkui, Yao Yugui. Recent studies on the crystal structure, electronic structure and mechanical properties of noble metal nitrides. Physics, 36, 2007, p. 03:0.
  • 5. Sun Deyan, Shang Cheng, Liu Zhipan, Gong Xingao. Intrinsic Features of an Ideal Glass. Chin. Phys. Lett., 34(02), 2017, 026402.
  • 6. Miloua R., Kebbab Z., Benramdane N., Khadraoui M., Chiker F. Ab initio prediction of elastic and thermal properties of cubic TiO2. Comp. Mat. Sci., 50, 2011, 2142-2147.
  • 7. Shougaijam Biraj, Ngangbam Chitralekha, Lenka Trupti Ranjan. Plasmon-Sensitized Optoelectronic Properties of Au Nanoparticle- Assisted Vertical Aligned TiO2 Nanowires by GLAD Technique. IEEE Trans. on electron dev., 64(3), 2017, 1127-1133.
  • 8. Fujishima A. and Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 1972, 37-38.
  • 9. Liu Yan, Li Zhe, Green Michael, Just Michael, Yang Li Yang, Chen Xiaobo. Titanium dioxide nanomaterials for photocatalysis. J. of Phys. D, 50, 2017, 193003.
  • 10. Shougaijam Biraj, Ngangbam Chitralekha, Lenka Trupti Ranjan. Enhancement of Broad Light Detection Based on Annealed Al-NPs Assistaed TiO2- NWs Deposited on p-Si by GLAD Technique. IEEE Trans. on Nanotechnol., 17(2), 2018, 285-292.
  • 11. Zhou Xiang-Feng, Dong Xiao, Qian Guang- Rui, Zhang Lixin, Tian Yonjun, and Wang Hui- Tian. Unusual compression behaviour of TiO2 polymorphs from first principles. Phys. Rev. B, 82, 2010, 060102.
  • 12. Qi Jun Liu, Zhang Ning-Chao, Liu Fu-Sheng, and Liu Zheng-Tang. Structural, elastic, electronic and optical properties of various mineral phases of TiO2 from first- principles calculations. Phys. Scr., 89, 2014, 047101.
  • 13. Li Jyun-Yi, Chang Sheng-Po, Hsu Ming-Hung and Chang Shoon- Jinn. Influence of Annealing Ambience on TiO2 Film Ultraviolet Photodetector. ECS J. Solid State Sci. Technol., 6(2), 2017, Q3056-Q3060.
  • 14. Zhang Jinfeng, Zhou Peng, Liu Jianjun and Yu Jiaguo. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys., 16, 2014, 20382-20386.
  • 15. Shougaijam Biraj, Swain Raghunandan, Ngangbam Chitralekha, Lenka Trupti Ranjan. Enhanced photodetection by glancing angle deposited vertically aligned TiO2 nanowires. IEEE Trans. on Nanotechnol., 15(3), 2016, 389-394.
  • 16. Jin En Mei, Jeong Sang Mun, Kang Hee- Cheol and Gu Hal-Bon. Photovoltaic Effect of Metal- Doped TiO2 Nanoparticles for Dye-Sentitized Solar Cells. J. Solid State Sci. Technol., 5, 2016, Q109-Q114.
  • 17. Mahmood Tariq, Cao Chuanbao, Tahir Muhammad, Idrees Faryal, Ahmed Maqsood, Tanveer M., Imran Aslam, Zahid Usman, Ali Zulfiqar, Hussain Sajan. Electronic, elastic, acoustic and optical properties of cubic TiO2: A DFT approach. Physica B, 420, 2015, 74-80.
  • 18. Liang Yongcheng, Zhang Bin, and Zhao Jianzhi. Mechanical properties and structural identification of cubic TiO2. Phys. Rev. B, 77, 2008, 094126.
  • 19. Kong X. G., Yu Y., and Gao T. Electronic excitation energies in TiO2 in the fluorite phase. Eur. Phys. J. B., 76 2010, 365.
  • 20. Kim D. Y., Almeida J. S. de, Koci L., Ahuja R. Dynamical stability of the hardest known oxide and the cubic solar material: TiO2. Appl. Phys. Lett., 90, 2007, 171903.
  • 21. Mattesini M., Almeida J. S. de, Dubrovinsky L., Dubrovinskaia N., Johansson B., and Ahuja R. Cubic TiO2 as a potential light absorber in solar-energy conversion. Phys. Rev. B, 70, 2004, 115101.
  • 22. Mattesini M., Almeida J. S. de, Dubrovinsky L., Dubrovinskaia N., Johansson B., and Ahuja R. High-pressure and high-temprature synthesis of cubic TiO2 polymorph. Phys. Rev. B, 70, 2004, 212101.
  • 23. Hu Xue-Lan, Zhao Ruo-Xi, Luo Yang, Song Qing- Gong. Effect of P impurity on NiAlΣ5 grain boundary from first-principles study. Chin. Phys. B, 26, 2017, 023101.
  • 24. Dash Debashish, Pandey Chandan K., Chaudhury Saurabh, Tripathy Susanta K. Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study. Chin. Phys. B, 27, 2018, 017102.
  • 25. Atomistix ToolKit version 2014.3, QuantumWise A/S (www.quantumwise.com)
  • 26. Brandbyge M., Mozos J.–L., Ordejón P., Taylor J., and Stokbro K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B, 65, 2002, 165401.
  • 27. Soler J.M., Artacho E., Gale J.D., García A., Junquera J., Ordejón P., and Sánchez-Portal D. The SIESTA method for ab-initio order- N materials simulation. J. Phys. Condens. Matter, 14, 2002, 2745.
  • 28. Desjarlais M.P. Density functional calculations of the reflectivity of shocked xenon with ionization based gap corrections. Contrib. Plasma Phys., 45, 2005, 300-304.
  • 29. Wooten F. Optical Properties of Solids. New York and London Academic Press, 1972.
  • 30. Callister William D. Materials Science and Engineering – An introduction, sixth edition. John Wiley & Sons Inc. 2004.
  • 31. Ralls K.M., Courtney T.H. and Wulff J. Introduction to Materials Science and Engineering. New York John Wiley & Sons Inc., 1976.
  • 32. Materials Studio CASTEP Manual Accelrys, 2010, http://www.tcm.phy.cam.ac.uk/castep/documenta-tion/WebHelp/CASTEP.html.
  • 33. Zhao Cuihua, Huang Dewei, Chen Jianhua, Li Yuqiong, and Du Zheng. First- principle study for influence of an external electric field on the electronic structure and optical properties of TiO2. RSC Adv., 6, 2016, 98908-98915.
  • 34. D. Di Claudio, A.R. Phani, S. Santucci. Enhanced optical properties of sol-gel derived TiO2 films using microwave irradiation. J. of opt. mat., 30, 2007, 279-284.
  • 35. Maruszczyk A., Dudek A., Szala M. Research into Morphology and Properties of TiO2 – NiAl Atmospheric Plasma Sprayed Coating. Adv. in Sci. and Technol. Res. J.,11(3), 2017, 204-210.
  • 36. Saniz R., Ye L. H., Shishidou T., and Freeman A. J. Structural, electronic and optical properties of NiAl3 : First-principle calculations. Phys. Rev. B 74, 2006, 014209.
  • 37. Marton L. Experiments on Low-Energy Electron Scattering and Energy Losses. Rev. Mod. Phys., 28, 1956, 172-183.
  • 38. Kuo Ming-Yu, Chen Cheng-Lung, Hua Chih- Yu, Yang Hsiao-Ching, Shen Pouyan. Density Functional Theory Calculations of Dense TiO2 polymorphs: Implication for visible-light-responsive photocatalysts. J. Phys. Chem. B 109, 2005, 8693.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c80ddb6-cc42-4a6b-9f52-c5fee1b4c59e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.