PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of selected non-destructive methods for diagnosis in new and old buildings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza wybranych metod nieniszczących diagnostyki w nowych i starych budynkach
Języki publikacji
EN
Abstrakty
EN
Non-destructive Testing (NDT) techniques are, as of today, a fundamental tool in civil engineering. Based on a thorough literature review, the scope of this article comprises a comprehensive assessment of the state-of-the-art of a series of NDT methods utilized specifically for concrete diagnosis, grouped into seven categories according to their main aim. Moreover, a summary of references to publications containing descriptions, applications, and case studies of each one is also presented.
PL
Techniki badań nieniszczących (NDT) są na dzień dzisiejszy podstawowym narzędziem stosowanym w inżynierii lądowej. Na podstawie szczegółowego przeglądu literatury przedstawiono w artykule kompleksową ocenę stanu technicznego budynku z zastosowaniem szeregu metod NDT. Ponadto przedstawiono odniesienia do publikacji zawierających opisy, zastosowania i studia przypadków każdej z metod NDT.
Rocznik
Tom
1-4
Strony
63--70
Opis fizyczny
Bibliogr. 69 poz., tab.
Twórcy
  • Wrocław University of Science and Technology, Poland
  • Wrocław University of Science and Technology, Poland
autor
  • Hellenic Mediterranean University, Heraklion, Greece
Bibliografia
  • [1] M. Alsharqawi, T. Zayed and S. Abu Dabous, "Common practices in assessing conditions of concrete bridges," MATEC Web of Conferences 120, 02016 (2017), DOI: 10.1051/matecconf/201712002016, 2017.
  • [2] K. H. Teng, P. Kot, M. Muradov, A. Shaw, K. Hashim, M. Gkantou and A. Al-Shamma’a, "Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete," Sensors 2019, 19, 547; doi:10.3390/s19030547, 2019.
  • [3] S. K. Verma, S. S. Bhadauria and S. Akhtar, "Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures," Journal of Construction Engineering, Hindawi Publishing Corporation, vol. 2013. Article ID 834572.
  • [4] Industrial Applications and Chemistry Section, International Atomic Energy Agency (IAEA), Guidebook on non-destructive testing of concrete structures. Training Course Series No. 17, Vienna: Printed by the IAEA in Austria, September 2002.
  • [5] N. J. Carino, "Nondestructive Testing of Concrete: History and Challenges," SP-144: Concrete Technology: Past, Present, and Future, American Concrete Institute, DOI:10.14359/4456, pp. 623-678, 1994.
  • [6] P. Kot, M. Muradov, M. Gkantou, G. . S. Kamaris, K. Hashimand D. Yeboah, "Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring," Applied Sciences 2021, 11, 2750, 2021.
  • [7] L. Pedreros, F. Cárdenas, N. Ramírez and E. Forero, "NDT Non-Destructive Test for Quality Evaluation of Concrete specimens by Ultrasonic Pulse Velocity measurement," IOP Conf. Series: Materials Science and Engineering 844 (2020) 012041, 2020.
  • [8] Germann Instruments, "Products by Application," [Online]. Available: https://germann.org/products-by-application. [Accessed March 2022].
  • [9] T. Q. L. Ngo, Y. R. Wang and D. L. Chiang, "Applying Artificial Intelligence to Improve On-Site Non-Destructive Concrete Compressive Strength Tests," Crystals 2021, 11, 1157. https://doi.org/10.3390/cryst11101157, 2021.
  • [10] P. S. Lande and A. S. Gadewar, "Application of Artificial Neural Networks in Prediction of Compressive Strength of Concrete by Using Ultrasonic Pulse Velocities," IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). ISSN: 2278-1684, vol. 3, no. 1, pp. 34-42, Sep-Oct. 2012.
  • [11] B. Youcef, K. Said and A.-B. Khoudja, "Prediction of concrete strength by non-destructive testing in old structures: Effect of core number on the reliability of prediction," MATEC Web of Conferences 149, 02007 (2018), CMSS-2017, https://doi.org/10.1051/matecconf/201814902007, 2018.
  • [12] T.-M. Oh, M.-K. Kim, J.-W. Lee, H. Kim and M.-J. Kim, "Experimental Investigation on Effective Distances of Acoustic Emission in Concrete Structures," Applied Sciences 10, 6051, 2020.
  • [13] J. K. Zhang, W. Yan and D. M. Cui, "Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines," Sensors 2016, 16, 447; doi:10.3390/s16040447, 2016.
  • [14] A. Moczko and M. Moczko, "Modern NDT Systems for Structural Integrity Examination of Concrete Bridge Structures," Procedia Engineering 91, XXIII R-S-P seminar, Theoretical Foundation of Civil Engineering (23RSP) (TFoCE 2014), doi: 10.1016/j.proeng.2014.12.086, p. 418 – 423, 2014.
  • [15] A. G. Davis, "Impact-Echo and Impulse Response Testing," Workshop on new technologies for NDT of roads and bridges, 1998 Transportation Research Board Annual Conference, January 1998.
  • [16] S. Küttenbaum, A. Taffe, T. Braml and S. Maack, "Reliability assessment of existing bridge constructions based on results of non-destructive testing," MATEC Web of Conferences 199, 06001 (2018), https://doi.org/10.1051/matecconf/ 201819906001, 2018.
  • [17] O. Aguirre, I. Vidaud, L. Peña and E. Vidaud, "Evaluación de Integridad Estructural mediante Tomografía Tridimensional Ultrasónica (MIRA), Primera parte," Construcción y Tecnología en Concreto, June 2013.
  • [18] W. A. Zatar, H. D. Nguyen and H. M. Nghiem, "Ultrasonic pitch and catch technique for non-destructive testing of reinforced concrete slabs," Journal of Infrastructure Preservation and Resilience, https://doi.org/10.1186/s43065-020-00012-z, 2020.
  • [19] O. Aguirre, I. Vidaud, L. Peña and E. Vidaud, "Evaluación de Integridad Estructural mediante Tomografía Tridimensional Ultrasónica (MIRA), Segunda parte," Construcción y Tecnología en Concreto, July 2013.
  • [20] C. Germann Petersen and H. D. Orozco Recillas, "Non-destructive testing of joints in precast element structures," Concrete Solutions: Proceedings of Concrete Solutions, 6th International Conference on Concrete Repair, Thessaloniki, Greece. ISBN 978-1-138-03008-4, pp. 229-234, 2016.
  • [21] E. Krawczyk, "Praca Dyplomowa Magisterska: Analiza wybranych metod nieniszczących do badania konstrukcji betonowych dostępnych jednostronnie (in Polish)," Politechnika Wrocławska, Wrocław, Academic Year 2019/2020.
  • [22] A. Kwiecińska, "Master's Diploma Thesis: Analysis of selected non-destructive methods for concrete diagnosis," Politechnika Wrocławska, Wrocław, Academic Year 2017/2018.
  • [23] M. Solla, S. Lagüela, N. Fernández and I. Garrido, "Assessing Rebar Corrosion through the Combination of Nondestructive GPR and IRT Methodologies," Remote Sensing 2019, 11, 1705; doi:10.3390/rs11141705, 2019.
  • [24] Y. K. Zhu, G. Y. Tian, R. S. Lu and H. Zhang, "A Review of Optical NDT Technologies," Sensors 2011, 11, 7773-7798; doi:10.3390/s110807773, ISSN 1424-8220, 2011.
  • [25] B. Milovanović and I. Banjad Pečur, "Review of Active IR Thermography for Detection and Characterization of Defects in Reinforced Concrete," Journal of Imaging 2016, 2, 11; doi:10.3390/jimaging2020011, 2016.
  • [26] B. Milovanović, M. Gaši and S. Gumbarević, "Principal Component Thermography for Defect Detection in Concrete," Sensors 2020, 20, 3891; doi:10.3390/s20143891, 2020.
  • [27] J. Huh, V. H. Mac, Q. H. Tran, K. Y. Lee, J. I. Lee and C. Kang, "Detectability of Delamination in Concrete Structure Using Active Infrared Thermography in Terms of Signal-to-Noise Ratio," Applied Sciences 2018, 8, 1986; doi:10.3390/app8101986, 2018.
  • [28] S. Nasrazadani and S. Hassani, "Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries," in Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, First Edition, Elsevier, 2016.
  • [29] VicRoads, "Technical Note: Non-Destructive Testing (NDT) of Concrete in Structures," December 2010. [Online]. Available: https://www.vicroads.vic.gov.au. [Accessed April 2022].
  • [30] A. Billon-Filiot, F. Taillade, M. Quiertant, J. M. Hénault, J. C. Renaud, R. Maurin and K. Benzarti, "Development of an Innovative Non-Destructive and Field-Oriented Method to Quantify the Bond Quality of Composite Strengthening Systems on Concrete Structures," Materials 2020, 13, 5421; doi:10.3390/ma13235421, 2020.
  • [31] E. Poulsen, "Chloride Profiles: Analysis and Interpretation of Observations," AEClaboratory, 1995.
  • [32] L. O. Nilsson, "Durability concept; pore structure and transport processes," in Advanced Concrete Technology, Elsevier, 2003.
  • [33] A. A. Shubbar, Z. S. Al-khafaji, M. S. Nasr and M. W. Falah, "Using non-destructive tests for evaluating flyover footbridge: Case study," KBES, 2020.
  • [34] A. Kwan and P. L. Ng, "Building Diagnostic Techniques and Building Diagnosis: The Way Forward," P.W. Tse et al. (eds.), Engineering Asset Management - Systems, Professional Practices and Certification, Lecture Notes in Mechanical Engineering, DOI 10.1007/978-3-319-09507-3_74, pp. 849-862, November 2015.
  • [35] S. Sathiyanarayanan, P. Natarajan, K. Saravanan, S. Srinivasan and G. Venkatachari, "Corrosion monitoring of steel in concrete by galvanostatic pulse technique," Cement & Concrete Composites 28 (2006), doi:10.1016/j.cemconcomp.2006.03.005, pp. 630-637, 2006.
  • [36] K. Hornbostel, T. Danner and M. R. Geiker, "Non-destructive Test Methods for Corrosion Detection in Reinforced Concrete Structures," Nordic Concrete Research – Publ. No. NCR 62 – Article 3, DOI: 10.2478/ncr-2019-0005, no. 1, pp. 41-61, 2020.
  • [37] K. P. V. Robles, J.-J. Yee and S.-H. Kee, "Effect of the Geometrical Constraints to the Wenner Four-Point Electrical Resistivity Test of Reinforced Concrete Slabs," Sensors 2021, 21, 4622. https://doi.org/10.3390/s21134622, 2021.
  • [38] Z. M. Sbartaï, S. Laurens, J. Rhazi, J. P. Balayssac and G. Arliguie, "Using radar direct wave for concrete condition assessment: Correlation with electrical resistivity," Journal of Applied Geophysics 62 (2007), doi:10.1016/j.jappgeo.2007.02.003, p. 361–374, 2007.
  • [39] J. H. Castorena-González, U. Martin, C. Gaona-Tiburcio, R. E. Núñez-Jáquez, F. M. Almeraya-Calderón, J. M. Bastidas and D.M. Bastidas, "Modeling Steel Corrosion Failure in Reinforced Concrete by Cover Crack Width 3D FEM Analysis," Frontiers in Materials, doi: 10.3389/fmats.2020.00041, vol. 7, no. 41, February 2020.
  • [40] R. W. Arndt, "Next Generation Building Diagnostics – Corrosion Detection," in Fifth International Conference on Sustainable Construction Materials and Technologies(SCMT5), London, 2019.
  • [41] V. Rimshin and P. Truntov, "Determination of carbonation degree of existing reinforced concrete structures and their restoration," E3S Web of Conferences 135, 03015 (2019), ITESE-2019, https://doi.org/10.1051/e3sconf/201913503015, 2019.
  • [42] S. Rathnarajan and R. G. Pillai, "Carbonation rate and service life of reinforced concrete systems with mineral admixtures and special cements," in CORCON, Mumbai, September 2017.
  • [43] P. Venkatesh and M. Alapati, "Condition Assessment of Existing Concrete Building Using Non-Destructive Testing Methods for Effective Repair and Restoration - A Case Study," Civil Engineering Journal, http://dx.doi.org/10.28991/cej-030919, vol. 3, no. 10, October 2017.
  • [44] A. Borosnyói, "NDT Assessment of existing concrete structures: Spatial analysis of rebound hammer results recorded in-situ," Engineering Structures and Technologies, ISSN 2029-882X / eISSN 2029-8838, 2015 7(1), doi:10.3846/2029882X.2015.1085331, pp. 1-12, 2015.
  • [45] A. Moczko and M. Moczko, "In-situ examination of the concrete quality: European standard approach," MATEC Web of Conferences 196, 02045 (2018), XXVII R-S-P Seminar 2018, Theoretical Foundation of Civil Engineering, https://doi.org/10.1051/matecconf/201819602045, 2018.
  • [46] Technischen Universität München (TUM), "TUM WikiSystem," [Online]. Available: https://wiki.tum.de/. [Accessed April 2022].
  • [47] N. J. Carino, "In-Place Strength Without Testing Cores: The Pullout Test," in 6th International Seminar on Advances in Cement & Concrete Technology for Sustainable Development.
  • [48] S. Czarnecki, "Non-destructive evaluation of the bond between a concrete added repair layer with variable thickness and a substrate layer using ANN," Procedia Engineering 172 (2017), doi: 10.1016/j.proeng.2017.02.049, p. 194–201, 2017.
  • [49] N. J. Carino and H. S. Lew, "The Maturity Method: From Theory to Application," in Proceedings of the 2001 Structures Congress & Exposition, Washington, D.C., 2001.
  • [50] COMMAND Center concrete temperature and maturity system, "The Maturity Method: Why You Should Validate Your Maturity Curve," June 2019. [Online]. Available: https://www.commandcenterconcrete.com/maturity-method-whyvalidate-maturity-curve/. [Accessed May 2022].
  • [51] BERRA Construction Products, "What Is Concrete Maturity?," [Online]. Available: https://www.berraproducts.com.au/whatis-concrete-maturity/. [Accessed May 2022].
  • [52] O. G. Erhimona and J. Andrew, "Recent advances in nondestructive testing of concretes and structures: An outlook," Journal of Civil Engineering and Construction Technology, DOI: 10.5897/JCECT2019.0494, pp. 20-31, 2019.
  • [53] N. J. Carino, "Performance of Electromagnetic Covermeters for Nondestructive Assessment of Steel Reinforcement," NISTIR 4988, National Institute of Standards and Technology, December 1992.
  • [54] A. Moczko and M. Moczko, "GWT – New Testing System for „in-situ” Measurements of Concrete Water Permeability," Procedia Engineering 153 (2016), XXV Polish – Russian – Slovak Seminar “Theoretical Foundation of Civil Engineering”, p. 483–489, 2016.
  • [55] A. I. Cark, "The Influences of Silica Fume and Curing Temperature on Water Permeability of Concrete," [Online]. Available: https://www.germanninstruments.com/wpcontent/uploads/2022/01/Cark-A.-I.-The-influence-of-silica-fumeand-curing- temperature-on-water-permeability-ofconcrete.pdf. [Accessed May 2022].
  • [56] K. G. Trezos, I. P. Sfikas and D. I. Pavlou, "Water Permeability of Self Compacting Concrete," 3rd fib International Congress, 2010.
  • [57] D. Rothstein, "Petrography: What It Can and Cannot Do," AC Business Media, Inc. Construction Network, January 2014. [Online]. Available: https://www.forconstructionpros.com/concrete/article/11248215/petrography-what-it-can-andcannot-do-for-concrete-contractors. [Accessed April 2022].
  • [58] "Petrographic Examination of Concrete," Concrete Research & Testing, LLC (CRT), [Online]. Available: http://www.concretetesting.com/petrographic-examinations concrete/. [Accessed April 2022].
  • [59] A. Snyder, "What Can Petrographic Analysis Tell You About the Condition of Concrete Structures?," RJ Lee Group, December 2014. [Online]. Available: https://www.rjlg.com/2014/12/petrography-tell-you-about-concrete-structures/. [Accessed April 2022].
  • [60] E. Ciampa, L. De Vito and M. R. Pecce, "Practical issues on the use of drones for construction inspections," XXVI AIVELA National Meeting, IOP Conf. Series: Journal of Physics: Conf. Series 1249 (2019) 012016, doi:10.1088/1742-6596/1249/1/012016, 2019.
  • [61] Vlaamse Drone Federatie (EUKA), Wetenschappelijk en Technisch Centrum voor het Bouwbedrijf (WTCB), Vlaams agentschap Innoveren & Ondernemen (VLAIO), "Drones als hulpmiddel: Inzichten in nieuwe werkprocessen op de bouwwerf (Drones as a tool: Insights into new work processes on the construction site)," VIS-project, in Dutch, January 2020.
  • [62] M. M. Sarker, T. A. Ali, A. Abdelfatah, S. Yehia and A. Elaksher, "A Cost-Effective Method for Crack Detection and Measurement on Concrete Surface," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, Hamburg, Germany, November 2017.
  • [63] O. F. Howlader and T. P. Sattar, "Finite Element Analysis based Optimization of Magnetic Adhesion Module for Concrete Wall Climbing Robot," International Journal of Advanced Computer Science and Applications (IJACSA), vol. 6, no. 8, 2015.
  • [64] G. Hüsken, S. Pirskawetz, D. Hofmann, F. Basedau, K. P. Gründer and D. Kadoke, "The load-bearing behavior of a reinforced concrete beam investigated by optical measuring techniques," Materials and Structures (2021) 54:102, https://doi.org/10.1617/s11527-021-01699-6, 2021.
  • [65] S. Ham and J. S. Popovics, "Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures," Sensors 2015, 15; doi:10.3390/s150409078, pp. 9078-9096, 2015.
  • [66] S. Lee and N. Kalos, "Bridge inspection practices using nondestructive testing methods," Journal of Civil Engineering and Management, 2015, ISSN 1392-3730 / eISSN 1822-3605, vol. 21(5), p. 654–665, 2015.
  • [67] R. Martínez-Barrita, H. López-Calvo, H. Gómez-Barranco and A. Muciño-Vélez, "Diagnosis of the deterioration state of a reticular reinforced concrete roof using non-destructive and semi-destructive techniques," Revista de Ingeniería Civil, vol. 3, no. 7, pp. 12-20, March 2019.
  • [68] J. Chakraborty, A. Katunin, P. Klikowicz and M. Salamak, "Early Crack Detection of Reinforced Concrete Structure Using Embedded Sensors," Sensors 2019, 19, 3879; doi:10.3390/s19183879, 2019.
  • [69] S. A. Rizwan, M. A. Qureshi and F. A. Najam, "In-Situ Health Assessment of a Poorly Executed Pre-Stressed In-Service Concrete Bridge and Suggesting a Rehabilitation Strategy – a Case Study," Procedia Engineering 54 (2013), doi: 10.1016/j.proeng.2013.03.058, pp. 636-647, 2013.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c7ec532-2375-4ea1-ba98-ac0bd0e948dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.