PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Critical Infrastructure Resilience by Using Virtual Failure Simulations on the Example of a Power Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zwiększanie odporności infrastruktury krytycznej poprzez wykorzystanie wirtualnych symulacji awarii na przykładzie elektrowni
Języki publikacji
EN
Abstrakty
EN
Resilience of Critical Infrastructure (CI) facilities defined as a capacity for further operation even upon changes that may result from natural or human-made disasters is extremely important from the perspective of functioning of society. Resilience of critical infrastructure facilities may be developed by taking such activities as introducing changes to their structure based on results of simulations of functioning of CI facilities. Another solution is to make use of computer simulations for better preparation of persons responsible for the functioning of CI facilities. This article describes a reference CI facility with potential scenarios of development of emergency situations and with a set of optional courses of an emergency situation. The scenarios were used to prepare a training application based on virtual reality techniques with an interface allowing a wide spectrum of interactions with a virtual environment, including commands issued to other employees, to be executed.
PL
Odporność obiektów Infrastruktury Krytycznej (IK) definiowana jako zdolność do dalszego działania nawet po wystąpieniu zmian, których źródłem mogą być katastrofy naturalne lub te spowodowane przez człowieka, jest niezwykle istotna z punktu widzenia funkcjonowania społeczeństwa. Zwiększanie odporności obiektów infrastruktury krytycznej może być realizowane dzięki działaniom takim jak wprowadzanie zmian do ich budowy na podstawie wyników symulacji funkcjonowania obiektów IK. Innym rozwiązaniem jest wykorzystanie symulacji komputerowych do lepszego przygotowania osób odpowiedzialnych za funkcjonowanie obiektów IK. W artykule opisano referencyjny obiekt IK wraz z potencjalnymi scenariuszami rozwoju sytuacji kryzysowych wraz zestawem wariantów przebiegu sytuacji kryzysowej. Scenariusze te zostały wykorzystane do przygotowania aplikacji szkoleniowej bazującej na technikach rzeczywistości wirtualnej z interfejsem umożliwiającym realizację szerokiego spektrum typów interakcji z środowiskiem wirtualnym, w tym wydawanie poleceń innym pracownikom.
Twórcy
  • Central Institute for Labour Protection - National Research Institute, 16 Czerniakowska Str., 00-701 Warsaw, Poland
  • Central Institute for Labour Protection - National Research Institute, 16 Czerniakowska Str., 00-701 Warsaw, Poland
Bibliografia
  • [1] Ouyang, Min. 2014. “Review on modeling and simulation of interdependent critical infrastructure systems”. Reliability Engineering and System Safety 121 : 43-60.
  • [2] DeWit, Andrew. 2016. “Japan's ’National Resilience’ and the legacy of 3–11”. The Asia-Pacific Journal 14 (6) : 1-7.
  • [3] https://rcb.gov.pl/wp-content/uploads/Standardy-s%C5%82u%C5%BC%C4%85ce-zapewnieniu-sprawnego-funkcjonowania-IK-%E2%80%93-dobre-praktyki-i-rekomendacje.pdf. (2022).
  • [4] Holling, C.S. 1973. “Resilience and stability of ecological systems”. Annual Review of Ecology and Systematics 4 (1) : 1-23.
  • [5] Cutter, L. Susan, Kevin D. Ash, Christopher T. Emrich. 2014. “The geographies of community disaster resilience”. Global Environmental Change 29 : 65-77.
  • [6] Bocchini, Paolo, Dan M. Frangopol. 2012. “Optimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segment”. Journal of Bridge Engineering 17 (1) : 117-129.
  • [7] Bocchini, Paolo, Dan M. Frangopol, Thomas Ummenhofer, Tim Zinke. 2013. “Resilience and sustainability of civil infrastructure: toward a unified approach”. Journal of Infrastructure Systems 20 (2) : 04014004.
  • [8] Frangopol, M. Dan, Paolo Bocchini. 2011. Resilience as optimization criterion for the rehabilitation of bridges belonging to a transportation network subject to earthquake. In Proceedings of the Structures Congress, Las Vegas NV, USA, 14-16.04.2011.
  • [9] Dessavre, Dante Gama, Jose E. Ramirez-Marquez, Kash Barker. 2016. “Multidimensional approach to complex system resilience analysis”. Reliability Engineering & System Safety 149 : 34-43.
  • [10] Bie, Zhaohong, Yanling Lin, Gengfeng Li, Furong Li. 2017. “Battling the extreme: a study on the power system resilience”. Proceedings of the IEEE 105 (7) : 1253-1266.
  • [11] Watson, Jean-Paul, Ross Guttromson, Cesar Silva-Monroy, Robert Jeffers, Katherine Jones, James Ellison, Charles Rath, Jared Gearhart, Dean Jones, Tom Corbet, Charles Hanley, La Tonya Walker. 2014. Conceptual framework for developing resilience metrics for the electricity, oil, and gas sectors in the United States. Sandia Report SAND2014-18019. Sandia National Lab, Albuquerque, USA.
  • [12] Hosseini, Seyedmohsen, Kash Barker, Jose E. Ramirez-Marquez. 2016. “A review of definitions and measures of system resilience”. Reliability Engineering & System Safety 145 : 47-61.
  • [13] Francis, Royce, Behailu Bekera. 2014. “A metric and frameworks for resilience analysis of engineered and infrastructure systems”. Reliability Engineering & System Safety 121 : 90-103.
  • [14] Carlson, J., R. Haffenden, G. Bassett, W. Buehring, M. Collins III, S. Folga, F. Petit, J. Phillips, D. Verner, R. Whitfield. 2012. Resilience: theory and application. Argonne National Lab, Argonne, USA.
  • [15] Eusgeld, Irene, David Henzi, Wolfgang Kröger. 2008. Comparative evaluation of modeling and simulation techniques for interdependent critical infrastructures. Scientific Report. Laboratory for Safety Analysis, ETH Zurich.
  • [16] Ouyang, Min. 2014. “Review on modeling and simulation of interdependent critical infrastructure systems”. Reliability Engineering & System Safety 121 : 43-60.
  • [17] Havlin, Shlomo, Nuno A.M. Araujo, Sergey V. Buldyrev, Cristovao S. Dias, Roni Parshani, G. Paul, H. Eugene Stanley. 2010. “Catastrophic cascade of failures in interdependent networks”. Nature 464 (7291) : 1025-1028.
  • [18] Huang, Chun-Nen, James J.H. Liou, Yen-Ching Chuang. 2014. “A method for exploring the interdependencies and importance of critical infrastructures”. Knowledge-Based Systems 55 : 66-74.
  • [19] Bollinger, L. Andrew. 2011. Evolving climate-resilient energy infrastructures. TU Delft, Delft, Netherlands.
  • [20] Arif, Anmar, Zhaoyu Wang, Jianhui Wang, Chen Chen. 2018. “Power distribution system outage management with co-optimization of repairs, reconfiguration, and DG dispatch”. IEEE Transactions on Smart Grid 9 (5) : 4109-4118.
  • [21] Chen, Bo, Chen Chen, Jianhui Wang, Karen L. Butler-Purry. 2018. “Sequential service restoration for unbalanced distribution systems and microgrids”. IEEE Transactions on Power Systems, 33 (2) : 1507-1520.
  • [22] Chen, Chen, Jianhui Wang, Feng Qiu, Dongbo Zhao. 2016. “Resilient distribution system by microgrids formation after natural disasters”. IEEE Transactions on Smart Grid 7 (2) : 958-966.
  • [23] Ding, Tao, Yanling Lin, Gengfeng Li, Zhaohong Bie. 2017. “A new model for resilient distribution systems by microgrids formation”. IEEE Transactions on Power Systems, 32 (5) : 4145-4147.
  • [24] Manshadi, D. Saeed, Mohammad E. Khodayar. 2015. “Resilient operation of multiple energy carrier microgrids”. IEEE Transactions on Smart Grid 6 (5) : 2283-2292.
  • [25] Yuan, Wei, Jianhui Wang, Feng Qiu, Chen Chen, Chongqing Kang, Bo Zeng. 2016. “Robust optimization-based resilient distribution network planning against natural disasters”. IEEE Transactions on Smart Grid 7 (6) : 2817-2826.
  • [26] Dudenhoeffer, D. Donald, May R. Permann, Milos Manic. 2006. CIMS: a framework for infrastructure interdependency modeling and analysis, Proceedings of the thirty eighth conference on winter simulation. In Proceedings of the Winter Simulation Conference WSC 2006, Monterey, California, USA, December 3-6, 2006.
  • [27] Keirstead, James, Nouri J. Samsatli, Nilay Shah. 2010. SynCity: an integrated tool kit for urban energy systems modeling. In Energy efficient cities: assessment tools and benchmarking practices, The World Bank, Washington, DC, USA, pp. 21-42.
  • [28] Li, Gengfeng, Zhaohong Bie, Yu Kou, Jiangfeng Jiang, Mattia Bettinelli. 2016. “Reliability evaluation of integrated energy systems based on smart agent communication”. Applied Energy 167 : 397-406.
  • [29] P. Pederson, Donald D. Dudenhoeffer, S. Hartley, May R. Permann. 2006. Critical infrastructure interdependency modeling: a survey of US and international research. Technical Report INL/EXT-06-11464, Idaho National Lab, Idaho Falls, USA.
  • [30] Bompard, Ettore, R. Napoli, Fei Xue. 2009. “Analysis of structural vulnerabilities in power transmission grids”. International Journal of Critical Infrastructure Protection 2 (1) : 5-12.
  • [31] Ji, Chuanyi, Yun Wei, Henry Mei, Jorge Calzada, Robert Wilcox, Steve Church, Timothy Hayes, et al. 2016. “Large-scale data analysis of power grid resilience across multiple US service regions”. Nat Energy 1 (5) : 16052.
  • [32] Peter, H. Larsen, Kristina Hamachi LaCommare Joseph H. Eto, James L. Sweeney. 2015. Assessing changes in the reliability of the U.S. electric power system Lawrence Berkeley National Lab, Berkeley, USA.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c7b7bc5-4655-40b3-b0cf-0b3f3cd9019f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.