Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a refined approach for integrating a solar power system and supercapacitor energy storage system into the urban railway traction power supply system. The primary aim is to optimize the use of renewable energy by efficiently utilizing solar power to meet traction power demands, thereby reducing the dependence on energy from traction transformers. The proposed solution involves utilizing a combination of Newton’s method with a dynamic programming algorithm. The dynamic programming algorithm determines the optimal energy distribution strategy among supercapacitors, solar panels, and traction transformers to minimize the objective function for each supercapacitor capacity and solar power rating. Newton’s method estimates the optimal supercapacitor value to achieve the minimum objective function. The proposed method is validated through a simulation model developed in MATLAB using data from the Cat Linh-Ha Dong urban railway line. The results demonstrate a 65.56% reduction in energy supplied from the grid, and further reductions are achievable in areas with higher radiation levels or expanded solar panel deployment along the railway line.
Czasopismo
Rocznik
Tom
Strony
583--602
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- Faculty of Electrical – Electronic Engineering, University of Transport and Communications, No. 3 Cau Giay Street, Lang Thuong Ward, Dong Da District, Hanoi, Vietnam
autor
- Faculty of Electrical – Electronic Engineering, University of Transport and Communications, No. 3 Cau Giay Street, Lang Thuong Ward, Dong Da District, Hanoi, Vietnam
Bibliografia
- [1] Dongyang Zhang, Yumei Guo, Farhad Taghizadeh-Hesary, Green finance and energy transition to achieve net-zero emission target, Energy Economics, vol. 126, 106936 (2023), DOI: 10.1016/j.eneco.2023.106936.
- [2] Tsvetkov Pavel, Samuseva Polina, Heterogeneity of the impact of energy production and consumption on national greenhouse gas emissions, Journal of Cleaner Production, vol. 434, no. 1, 139638 (2024), DOI: 10.1016/j.jclepro.2023.139638.
- [3] Nakaret Kano, Zhongbei Tian, Nutthaka Chinomi, Xiaoguang Wei, Stuart Hillmansen, Renewable Sources and Energy Storage Optimization to Minimize the Global Costs of Railways, IEEE Transactions on Vehicular Technology, vol. 74, iss. 5, pp. 1–11 (2023), DOI: 10.1109/TVT.2023.3265944.
- [4] Aleksy Kwilinski, Oleksii Lyulyov, Tetyana Pimonenko, Reducing transport sector CO2 emissions patterns: Environmental technologies and renewable energy, Journal of Open Innovation: Technology, Market, and Complexity, vol. 10, no. 1, 100217 (2024), DOI: 10.1016/j.joitmc.2024.100217.
- [5] Zhanhe Li, Xiaoqian Li, Chao Lu, Kechun Ma, Weihan Bao, Carbon emission responsibility accounting in renewable energy-integrated DC traction power systems, Applied Energy, vol. 355, no. 1, 122191 (2024), DOI: 10.1016/j.apenergy.2023.122191.
- [6] Hui-Jen Chuang, Optimization of inverter placement for mass rapid transit systems by immune algorithm, Electric Power Applications (IEE Proc Elec Power Appl), of Conference, IEEE (2005), DOI: 10.1049/ip-epa:20041143.
- [7] José Antonio Aguado, Antonio José Sánchez Racero, Sebastián de la Torre, Optimal Operation of Electric Railways with Renewable Energy and Electric Storage Systems, IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 993–1001 (2018), DOI: 10.1109/TSG.2016.2574200.
- [8] Spalvieri C., Rossetta I., Lamedica R., Ruvio A., Papalini A., Train braking impact on energy recovery: the case of the 3 kV d.c. railway line Roma-Napoli via Formia, 2019 AEIT International Annual Conference (AEIT), IEEE, Florence, Italy (2019), DOI: 10.23919/AEIT.2019.8893399.
- [9] Mihaela Popescu, Alexandru Bitoleanu, A Review of the Energy Efficiency Improvement in DC Railway Systems, Energies, vol. 12, no. 6, pp. 1092–1117 (2019), DOI: 10.3390/en12061092.
- [10] Vito Calderaro, Vincenzo Galdi, Giuseppe Graber, Antonio Piccolo, Optimal siting and sizing of stationary supercapacitors in a metro network using PSO, in IEEE International Conference on Industrial Technology (ICIT), IEEE, Seville, Spain (2015).
- [11] Vito Calderaro, Vincenzo Galdi, Giuseppe Graber, Siting and sizing of stationary SuperCapacitors in a Metro Network, in AEIT Annual Conference, IEEE (2013).
- [12] Reza Teymourfar, Razieh Nejati Fard, Behzad Asaei, Hossein Iman-Eini, Energy recovery in a metro network using stationary supercapacitors, in 2nd Power Electronics, Drive Systems and Technologies Conference, IEEE, Tehran, Iran (2011).
- [13] Bin Wang, Zhongping Yang, Fei Lin, Wei Zhao, An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing, Energies, vol. 7, no. 10, pp. 6434–6458 (2014), DOI: 10.3390/en7106434.
- [14] Tosaphol Ratniyomchai, Stuart Hillmansen, Pietro Tricoli, Optimal capacity and positioning of stationary supercapacitors for light rail vehicle systems, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, IEEE, Ischia, Italy (2014).
- [15] Huan Xia, Huaixin Chen, Zhongping Yang, Fei Lin, Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm, Energies, vol. 8, no. 10, pp. 11618–11640 (2015), DOI: 10.3390/en81011618.
- [16] Regina Lamedica, Alessandro Ruvio, Laura Palagi, Nicola Mortelliti, Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line, Energies, vol. 13, iss. 23, pp. 6271–6293 (2020), DOI: 10.3390/en13236271.
- [17] David Roch-Dupréa, Tad Gonsalvesb, Asunción P. Cucalaa, Ramón R. Pecharromána, Álvaro J. López-Lópeza, Antonio Fernández-Cardador, Determining the optimum installation of energy storage systems in railway electrical infrastructures by means of swarm and evolutionary optimization algorithms, Electrical Power and Energy Systems, vol. 124, no. 2, pp. 1–15 (2020), DOI: 10.1016/j.ijepes.2020.106295.
- [18] Mariam Saeed, Fernando Briz, Juan Manuel Guerrero, Igor Larrazabal, David Ortega, Victor Lopez, Juan Jose Valera, Onboard Energy Storage Systems for Railway: Present and Trends, IEEE Open Journal of Industry Applications, vol. 4, pp. 238–259 (2023), DOI: 10.1109/OJIA.2023.3293059.
- [19] Hamed Jafari Kaleybar, Mostafa Golnargesi, Morris Brenna, Dario Zaninelli, Hybrid Energy Storage System Taking Advantage of Electric Vehicle Batteries for Recovering Regenerative Braking Energy in Railway Station, Energies, vol. 16, no. 13, 5117 (2023), DOI: 10.3390/en16135117.
- [20] Takeshi Igarashi, Teruhisa Kumano, Hitoshi Hayashiya, Toshiaki Takino, Efficiency improvement of rooftop photovoltaic system at railway station, Journal of International Council on Electrical Engineering, vol. 7, no. 1, pp. 41–50 (2017), DOI: 10.1080/22348972.2016.1229917.
- [21] Flavio Ciccarelli, Luigi Pio Di Noia, Renato Rizzo, Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems, Energies, vol. 11, no. 2, 410 (2018), DOI: 10.3390/en11020410.
- [22] Xiaojuan Zhu, Haitao Hu, Haidong Tao, Zhengyou He, Stability Analysis of PV Plant-Tied MVdc Railway Electrification System, IEEE Transactions on Transportation Electrification, vol. 5, no. 1, pp. 311–323 (2019), DOI: 10.1109/TTE.2019.2900857.
- [23] Ibragim M. Asanov, Egor Y. Loktionov, Possible benefits from PV modules integration in railroad linear structures, Renewable Energy Focus, vol. 25, pp. 1–3 (2018), DOI: 10.1016/j.ref.2018.02.003.
- [24] Luigi Pio Di Noia, Renato Rizzo, Analysis of Integration of PV Power Plant in Railway Power Systems, 2019 8th International Conference on Modern Power Systems (MPS), IEEE, Cluj-Napoca, Cluj, Romania (2019), DOI: 10.1109/MPS.2019.8759720.
- [25] Xiaojun Shen, Hongyang Wei, Li Wei, Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line, Applied Energy, vol. 260, no. 3, 114177 (2020), DOI: 10.1016/j.apenergy.2019.114177.
- [26] Seunghyun Park, Surender Reddy Salkuti, Optimal Energy Management of Railroad Electrical Systems with Renewable Energy and Energy Storage Systems, Sustainability, vol. 11, no. 22, 6293 (2019), DOI: 10.3390/su11226293.
- [27] Md. Akibur Rahaman, Md. Mustaque Nadim, Utilization of Railway Track for Grid Connected PV System, Journal of Power and Energy Engineering, vol. 8, no. 4, pp. 25–33 (2020), DOI: 10.4236/jpee.2020.84003.
- [28] Prabath J. Binduhewa, Sizing Algorithm for a Photovoltaic System along an Urban Railway Network towards Net Zero Emission, International Journal of Photoenergy, vol. 2021, no. 5, pp. 1–17 (2021), DOI: 10.1155/2021/5523448.
- [29] Feng Ding, Jianping Yang, Zan Zhou, Economic profits and carbon reduction potential of photovoltaic power generation for China’s high-speed railway infrastructure, Renewable and Sustainable Energy, vol. 178, no. 2023, 113272 (2023), DOI: 10.1016/j.rser.2023.113272.
- [30] Md. Sajjad-Ul Islam, Md. Kousar Ahmed, Patwary Rezwan Mahadi, Md. Farhadul Islam, Asiful Islam, Syeda Tanjila Islam Meem, Solar Panel Integration on Metro Rail Tracks for Sustainable Energy Generation, 2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), IEEE, Gazipur, Bangladesh (2024), DOI: 10.1109/ICAEEE62219.2024.10561795.
- [31] Bowen Guan, Haobo Yang, Tao Zhang, Xiaohua Liu, Xinke Wang, Technoeconomic analysis of rooftop PV system in elevated metro station for cost-effective operation and clean electrification, Renewable Energy Focus, vol. 226, no. 2024, 120305 (2024), DOI: 10.1016/j.renene.2024.120305.
- [32] Guannan Li, Siu Wing, Multi-agent deep reinforcement learning-based multi-time scale energy management of urban rail traction networks with distributed photovoltaic–regenerative braking hybrid energy storage systems, Journal of Cleaner Production, vol. 466, no. 2024, 142842 (2024), DOI: 10.1016/j.jclepro.2024.142842.
- [33] Abdullah Tariq Sipra, Fawad Azeem, Zulfiqar Ali Memon, Sobia Baig, Mujtaba Hussain Jaffery, Design and assessment of energy management strategy on rail coaches using solar PV and battery storage to reduce diesel fuel consumption, Energy, vol. 288, no. 1, 129718 (2024), DOI: 10.1016/j.energy.2023.129718.
- [34] Yi Huang, Haitao Hu, Yinbo Ge, Haizhu Liao, Jiaming Luo, Shibin Gao, Joint Sizing Optimization Method of PVs, Hybrid Energy Storage Systems, and Power Flow Controllers for Flexible Traction Substations in Electric Railways, IEEE Transactions on Sustainable Energy, vol. 15, no. 2, pp. 1210-1223 (2024), DOI: 10.1109/TSTE.2023.3331346.
- [35] Pengyu Wei, Muhammad Abid, Humphrey Adun, Desire Kemena Awoh, Dongsheng Cai, Juliana Hj Zaini, Olusola Bamisile, Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application, Applied Sciences, vol. 13, no. 9, 5626 (2023), DOI: h10.3390/app13095626.
- [36] Shiwei Xia, Haiyi Wu, Yibo Mao, Ting Wu, Guanghui Song, Jelena Stojkov, Photovoltaic Power Generation and Energy Storage Capacity Cooperative Planning Method for Rail Transit Self-consistent Energy Systems Considering the Impact of DoD, IEEE Transactions on Smart Grid, vol. 18, iss. 1, pp. 665–677 (2024), DOI: 10.1109/TSG.2024.3408950.
- [37] Lixia Tian, Yuansheng Huang, Shuang Liu, Shize Sun, Jiajia Deng, Hengfeng Zhao, Application of photovoltaic power generation in rail transit power supply system under the background of energy low carbon transformation, Alexandria Engineering Journal, vol. 60, no. 6, pp. 5167–5174 (2021), DOI: 10.1016/j.aej.2021.04.008.
- [38] Tran Van Khoi, Nguyen Duc Khuong, Optimal planning of substations on urban railway power supply systems using integer linear programming, Transport and Communications Science Journal, vol. 70, no. 4, pp. 264–278 (2019), DOI: 10.25073/tcsj.70.4.14.
- [39] Chau N. T. M., Hanoi Urban Railway Project Cat Linh-Ha Dong Line. Package 1: EPC Contact. Technical Design, Book 2: Traffic organization and operation management, in Railway Project Management Unit, Vietnam Railway Administration (2014).
- [40] Tran Van Khoi, An Thi Hoai Thu Anh, Dang Viet Phuc, Optimizing the urban train speed to minimize the energy consumption and comfort, Transport and Communications Science Journal, vol. 72, no. 3, pp. 317–329 (2021), DOI: 10.47869/tcsj.72.3.7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c78dd34-d44c-49c0-bb17-d9efb0298c32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.