PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optimization of process parameters for enhanced mechanical properties of polypropylene ternary nanocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Preparation of Polypropylene ternary nanocomposites (PPTN) was accomplished by blending multiwall carbon nanotube (MWCNT) in polypropylene/clay binary system using a melt intercalation method. The effects of MWCNT loadings (A), melting temperature (B) and mixing speed (C) were investigated and optimized using central composite design. The analysis of the fitted cubic model clearly indicated that A and B were the main factors influencing the tensile properties at a fixed value of C. However, the analysis of variance showed that the interactions between the process parameters, such as; AB, AC, AB2, A2B and ABC, were highly significant on both tensile strength and Young’s modulus enhancement, while no interaction is significant in all models considered for elongation. The established optimal conditions gave 0.17%, 165 °C, and 120 rpm for A, B and C, respectively. These conditions yielded a percentage increase of 57 and 63% for tensile strength and Young’s modulus respectively compared to the virgin Polypropylene used.
Słowa kluczowe
Twórcy
autor
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
autor
  • Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur, Malaysia
autor
  • Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur, Malaysia
Bibliografia
  • 1. Mittal V. Polypropylene–layered silicate nanocomposites: Filler matrix interactions and mechanical properties. Journal of Thermoplastic Composite Materials, 20, 2007, 575–599.
  • 2. Nello P. Polypropylene handbook. Second edition, Hanser Publishers, Munich, Hanser Gadner Publications, Cincinnati 2005, 326–334,
  • 3. Karian H.G. Handbook of polypropylene and polypropylene composites. Marcel Dekker, NY. 2003, 155–158.
  • 4. Valentini L., Biagiott I.K., Kenny J.M. Lopez M., Manchando M.A. Physical and mechanical behaviour of single wall carbon nanotube/polypropylene/ethylene-polypropylene-diene rubber nancomposite. Journal of Applied Polymer Science, 89(10), 2003, 2657–2663.
  • 5. Hu N., Masuda Z., Yamamoto G., Fukunaga H., Hashida T., Qin J. Effect of fabrication process on electrical properties of polymer/ multi-wall carbon nanotube nanocomposites composites. Part A. Applied Science and Manufacturing, 39(5), 2008, 893–903.
  • 6. Xun X., Krishnan J., Caroline M.,, Nicholas S. Life Cycle assessment of wood-fibre reinforced poly-propylene composite. Journal of Material Processing Technology, 198, 2008, 168–177.
  • 7. Ma J., Qi Z., Hu Y. Synthesis and characterization of polypropylene-clay nanocomposites. Journal of Applied Polymer Science, 82, 2001, 3611–3617.
  • 8. Thostenson E.J., Ren Z., Chou T.W. Advances in science and technology of carbon nanotubes and their composites. A review. Composite Science and Technology, 61, 2001, 1899–1912.
  • 9. Bafna A., Beaucage G., Mirabella F., Mehta S. 3D hierarchical orientation in polymer-clay nanocomposite film. Polymer, 44(4), 2003, 1103–1115.
  • 10. Fornes T.D., Yoon P.J., Keskkula H., Paul D.R. Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer, 42(25), 2001, 9929–9940.
  • 11. Oya A., Kurokawa Y., Yasuda H. Factors controlling mechanical properties of clay mineral/ polypropylene nanocomposites. Journal of Material Science, 35(5), 2000, 1045–1050.
  • 12. Gilman J.W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science 15, 1999, 31–49.
  • 13. Isam Y.Q. The potential of carbon nanotubes production as a filler element in polymer nanocomposite: A review article. Minia Journal of Engineering and Technology, 30(1), 2011, 1–21.
  • 14. Chen T.K., Tien Y.I., Wei K.H. Synthesis and characterization of novel segmented polyurethane/clay nanocomposite. Polymer, 41(4), 2000, 1345–1353.
  • 15. Sudip R., Siew Y.Q., Allan E., Xiao D.C. The potential use of polymer-clay nanocomposites in food packaging. International Journal of Food Engineering 2(4), 2006, 4–13.
  • 16. Laszlo S., Agnes A., Pukanszky B.Jr., Julius G.V., Punkaszky B. Morphological characterization of PP/Clay nanocomposites across the length scales of the structural architecture. Micromolecular Materials and Engineering, 291(7), 2006, 858–868.
  • 17. Salawudeen T.O., Suleyman A.M., Qasim H.S., Ma’an F.A., Faridah Y., Isam Y.Q. Improving the polypropylene-clay composite using carbon nanotube as secondary filler. Energy Research Journal 1 (2), 2010, 68–72.
  • 18. Manel M, Souhail B., Moncef C., Christelle R., Michel P., Christophe B., Hamadi A. Optimization of pecting extraction from lemon by-product with acidified date juice using response surface methodology. Carbohydrate Polymers, 74, 2008, 185–192.
  • 19. Stat-Ease, Design Expert, Version 6.0.8. Available on wwwstatease.com(2002).
  • 20. Douglas C.M. Design and analysis of experiments. 5th edition. Wiley, NY, 2000, 388–424.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c77aefd-162f-4df6-9c18-145183afa70f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.