Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Bioprodukcja zróżnicowanych strukturalnie poli(hydroksyalkanianów) z produktów ubocznych przemysłu mięsnego
Konferencja
POLYMAT60 (30.06-1.07.2014 ; Zabrze, Poland)
Języki publikacji
Abstrakty
For commercial success, enhanced poly(hydroxyalkanoate) (PHA) production must address both material performance and economic aspects. Conventional PHA production consumes expensive feedstocks dedicated to nutrition. Switching to carbon-rich (agro)industrial side-streams alleviates industrial disposal problems, preserves food resources, and can be economically superior. Processes developed in the recently performed EU-FP7 project ANIMPOL resort to lipid-rich surplus streams from slaughterhouses and the rendering industry; these materials undergo chemical transformation to crude glycerol phase (CGP) and biodiesel. The saturated biodiesel share (SFAE) counteracts its applicability as abiofuel but, in addition to CGP, can be converted biotechnologically to PHAs. Depending on the applied microbial production strain and the selected carbon source (SFAE or CGP), thermoplastic short chain length PHA (scl-PHA), as well as elastomeric to latex-like medium chain length PHA (mcl-PHA), can be produced from these inexpensive feed stocks. The article illustrates the biotechnological conversion of animal-based CGP and SFAE towards poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), respectively, by Cupriavidus necator strain DSM 545. SFAE conversion towards mcl-PHAs consisting of various saturated and unsaturated building blocks by two pseudomonades, Ps. citronellolis DSM 50332 and Ps. chlororaphis DSM 50083, are also shown. Together with the kinetics of the bioprocesses, the results from the characterization of isolated samples of these structurally diverse biopolyesters are compared; data demonstrate the high versatility of biopolymer properties making them applicable in various fields of the plastic market. In addition to the need for inexpensive carbon feed stocks, the article points to further hot spots of the PHA-production chain that must be considered in order to lower the overall PHA production costs, and to enhance product quality. The benefits arising from multistage continuous cultivation production set-ups, namely high-throughput production of PHA of predefined composition and constant quality, are especially discussed. Finally, contemporary approaches towards environmentally and ecologically sustainable PHA recovery from biomass are summarized.
Artykuł stanowi przegląd literatury dotyczącej biosyntezy poli(hydroksyalkanianów) (PHA) z wykorzystaniem jako surowców odpadów z przemysłu rolno-spożywczego. Omówiono wyniki uzyskane podczas realizacji projektu ANIMPOL (7. PR UE), w którym jako surowiec do syntezy PHA stosowano bogate w tłuszcze produkty uboczne z rzeźni i zakładów utylizacji odpadów zwierzęcych, przekształcone chemicznie w surową fazę glicerynową (CGP) i biodiesel (estry nasyconych kwasów tłuszczowych, SFAE). Zależnie od użytego szczepu bakterii oraz źródła węgla (SFAE lub CGP) otrzymano termoplastyczne krótkołańcuchowe PHA (scl-PHA) lub średniołańcuchowe PHA (mcl-PHA). Zaprezentowano biotechnologiczną konwersję CGP iSFAE pochodzenia zwierzęcego do poli(3-hydroksymaślanu) (PHB) i poli(3-hydroksymaślanu-co-3-hydroksywalerianu) (PHBV) za pomocą szczepu bakteryjnego Cupriavidus necator strain DSM 545, syntezę mcl-PHA zawierających nasycone i nienasycone elementy strukturalne za pomocą bakterii z rodzaju Pseudomonas (Ps. citronellolis DSM 50332 i Ps. chlororaphis DSM 50083). Omówiono kinetykę bioprocesów oraz charakterystykę otrzymanych biopoliestrów, przedyskutowano elementy cyklu produkcyjnego PHA kluczowe z punktu widzenia zmniejszenia kosztów i poprawy jakości produktów oraz korzyści wynikające z zastosowania układów ciągłej wielostopniowej hodowli w wysokowydajnej produkcji PHA o założonym składzie i stabilnej jakości. Omówiono też nowe metody odzyskiwania PHA z biomasy, zgodne z wymaganiami ochrony środowiska.
Czasopismo
Rocznik
Tom
Strony
298--308
Opis fizyczny
Bibliogr. 120 poz., rys.
Twórcy
autor
- University of Graz, Institute of Chemistry, NAWI Graz, Heinrichstrasse 28/III, 8010 Graz, Austria
autor
- ARENA— Association for Resource Efficient and Sustainable Technologies, Inffeldgasse 21/B, 8010 Graz, Austria
Bibliografia
- [1] http://plasticseurope .org/documents/document/20121120170458-final_plasticsthefacts_nov2012_en_web_resolution.pdf (access date 16.06.2014)
- [2] Koller M., Salerno A., Dias M. et al.: Food Technology and Biotechnology 2010, 48, 255.
- [3] Iles A., Martin A.N.: Journal of Cleaner Production 2013, 45, 38. http://dx.doi.org/10.1016/j.jclepro.2012.05.008
- [4] Kr an A., Hemjinda S., Miertus S. et al.: Polymer Degradation and Stability 2006, 91, 2819. http://dx.doi.org/10.1016/j.polymdegradstab.2006.04.034
- [5] Miertus S., Ren X.: Polimery 2002, 47, 545.
- [6] Amache R., Sukan A., Safari M. et al.: Chemical Engineering Transactions 2013, 32, 931. http://dx.doi.org/10.3303/CET1332156
- [7] Chen G.Q.: Chemical Society Reviews 2009, 38, 2434. http://dx.doi.org/10.1039/B812677C
- [8] Chiellini E., Barghini A., Cinelli P., Ilieva V.I.: “Overview of environmentally compatible polymeric materials for food packaging” in “Environmentally Compatible Food Packaging”, (ed. Chiellini E.), Woodhead Publishing 2008, p. 371.
- [9] Pawar P.A., Purwar A.H.: American Journal of Engineering Research 2013, 2, 151.
- [10] Chiellini E., Cinelli P., D’Antone S., Ileva V.I.: Polimery 2002, 47, 538.
- [11] Basnett P., Ching K.Y., Stolz M. et al.: Reactive and Functional Polymers 2013, 73, 1340. http://dx.doi.org/10.1016/j.reactfunctpolym.2013.03.019
- [12] Hazer D.B., Kýlýçay E., Hazer B.: Materials Science and Engineering: C 2012, 32, 637. http://dx.doi.org/10.1016/j.msec.2012.01.021
- [13] Williams S.F., Rizk S., Martin D.P. Biomedical Engineering / Biomedizinische Technik 2013, 58, 439. http://dx.doi.org/10.1515/bmt-2013-0009
- [14] Gonta S., Savenkova L., Kolosovskis J. et al.: Key Engineering Materials 2013, 559, 31. http://dx.doi.org/10.4028/www.scientific.net/KEM.559.31
- [15] Muhr A., Rechberger E.M., Salerno A. et al.: Reactive and Functional Polymers 2013, 73, 1391. http://dx.doi.org/10.1016/j.reactfunctpolym.2012.12.009
- [16] Braunegg G., Lefebvre G., Genser K.F.: Journal of Biotechnology 1998, 65, 127. http://dx.doi.org/10.1016/S0168-1656(98)00126-6
- [17] Steinbüchel A., Valentin H.E.: FEMS Microbiology Letters 1995, 128, 219. http://dx.doi.org/10.1016/0378-1097(95)00125-O
- [18] Renner G., Haage G., Braunegg G.: Applied Microbiology and Biotechnology 1996, 46, 268.
- [19] Kunioka M., Tamaki A., Doi Y.: Macromolecules 1989, 22, 694. http://dx.doi.org/10.1021/ma00192a031
- [20] Park S.J., Jang Y.A., Lee H. et al.: Metabolic Engineering 2013, 20, 20. http://dx.doi.org/10.1016/j.ymben.2013.08.002
- [21] Modi S., Koelling K., Vodovotz Y.: European Polymer Journal 2011, 47, 179. http://dx.doi.org/10.1016/j.eurpolymj.2010.11.010
- [22] Zinn M.: “Biosynthesis of medium-chain-length poly[(R)-3-hydroxyalkanoates]” in “Plastics from bacteria”, (ed. George Guo-Qiang Chen), Springer-Verlag, Berlin Heidelberg 2010, pp. 213—226.
- [23] Chan R.T., Garvey C.J., Marçal H. et al.: International Journal of Polymer Science 2011, article ID 651549. http://dx.doi.org/10.1155/2011/651549
- [24] Loureiro N.C., Esteves J.L., Viana J.C., Ghosh S.: Composites Part B: Engineering 2014, 60, 603. http://dx.doi.org/doi:10.1016/j.compositesb.2014.01.001
- [25] Madbouly S.A., Schrader J.A., Srinivasan G. et al.: Green Chemistry 2014, 16, 1911. http://dx.doi.org/10.1039/C3GC41503A
- [26] Pietrini M., Roes L., Patel M.K., Chiellini E.: Biomacromolecules 2007, 8, 2210. http://dx.doi.org/10.1021/bm0700892
- [27] Wu C.S., Liao H.T.: Polymer Degradation and Stability 2014, 99, 274. http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.019
- [28] Arrieta M.P., Fortunati E., Dominici F. et al.: Carbohydrate Polymers 2014, 107, 16. http://dx.doi.org/10.1016/j.carbpol.2014.02.044
- [29] Grottkau B.E., Cai X., Wang J. et al.: Current Drug Metabolism 2013, 14, 840. http://dx.doi.org/10.2174/138920021131400105
- [30] Lee J., Jung S.G., Park C.S., Kim H.Y. et al.: Bioorganic &Medicinal Chemistry Letters 2011, 21, 2941. http://dx.doi.org/10.1016/j.bmcl.2011.03.058
- [31] Lu X.Y., Ciraolo E., Stefenia R. et al.: Applied Microbiology and Biotechnology 2011, 89, 1423. http://dx.doi.org/10.1007/s00253-011-3101-1
- [32] Moraes R.P., Smeets N., McKenzie N. et al.: Macromolecular Materials and Engineering 2013, 298, 1004. http://dx.doi.org/10.1002/mame.201200295
- [33] Koller M., Gasser I., Schmid F., Berg G.: Engineering in Life Sciences 2011, 11, 222. http://dx.doi.org/10.1002/elsc.201000190
- [34] Koller M., Muhr A.: Chemical and Biochemical Engineering Quarterly 2014, 28, 65.
- [35] González-García Y., Nungaray J., Córdova J. et al.: Journal of Industrial Microbiology & Biotechnology 2008, 35, 629. http://dx.doi.org/10.1007/s10295-007-0299-0
- [36] Rodriguez-Contreras A., Koller M., de Sousa Dias M.M. et al.: Food Technology and Biotechnology 2013, 51, 123.
- [37] Braunegg G., Lefebvre G., Renner G. et al.: Canadian Journal of Microbiology 1995, 41, 239. http://dx.doi.org/10.1139/m95-192
- [38] Zinn M., Witholt B., Egli T.: Journal of Biotechnology 2004, 113, 263. http://dx.doi.org/10.1016/j.jbiotec.2004.03.030
- [39] Tappel R.C., Kucharski J.M., Mastroianni J.M. et al.: Biomacromolecules 2012, 13, 2964. http://dx.doi.org/10.1021/bm301043t
- [40] Hu D., Chung A.L., Wu L.P. et al.: Biomacromolecules 2011, 12, 3166. http://dx.doi.org/10.1021/bm200660k
- [41] Pederson E.N., McChalicher C.W., Srienc F.: Biomacromolecules 2006, 7, 1904. http://dx.doi.org/10.1021/bm0510101
- [42] Tripathi L.,Wu L.P., Chen J., Chen G.Q.: Microbial Cell Factories 2012, 11, 44. http://dx.doi.org/10.1186/1475-2859-11-44
- [43] Tripathi L.,Wu L.P., Meng D., Chen J., Chen G.Q.: Biomacromolecules 2013, 14, 862. http://dx.doi.org/10.1021/bm3019517
- [44] Atliæ A., Koller M., Scherzer D., Kutschera C. et al.: Applied Microbiology and Biotechnology 2011, 91, 295. http://dx.doi.org/10.1007/s00253-011-3260-0
- [45] Horvat P., Špoljariæ I.V., Lopar M. et al.: Bioprocess and Biosystems Engineering 2013, 36, 1235. http://dx.doi.org/10.1007/s00449-012-0852-8
- [46] Lopar M., Vrana Špoljariæ I., Atliæ A. et al.: Biochemical Engineering Journal 2013, 79, 57. http://dx.doi.org/10.1016/j.bej.2013.07.003
- [47] Middelberg A. P.: Biotechnology Advances 1995, 13, 491. http://dx.doi.org/10.1016/0734-9750(95)02007-P
- [48] Braunegg G., Bona R., Schellauf F., Wallner E.: Polimery 2002, 47, 479.
- [49] Koller M., Bona R., Chiellini E., Braunegg G.: Biotechnology Letters 2013, 35, 1023. http://dx.doi.org/10.1007/s10529-013-1185-7
- [50] Nonato R., Mantelatto P., Rossell C.: Applied Microbiology and Biotechnology 2001, 57, 1.
- [51] Riedel S.L., Brigham C.J., Budde C.F. et al.: Biotechnology and Bioengineering 2013, 110, 461. http://dx.doi.org/10.1002/bit.24713
- [52] Wampfler B., Ramsauer T., Rezzonico S. et al.: Biomacromolecules 2010, 11, 2716. http://dx.doi.org/10.1021/bm1007663
- [53] Hejazi P., Vasheghani-Farahani E., Yamini Y.: Biotechnology Progress 2003, 19, 1519. http://dx.doi.org/10.1021/bp034010q
- [54] Khosravi-Darani K., Vasheghani-Farahani E., Shojaosadati S.A., Yamini Y.: Biotechnology Progress 2004, 20, 1757. http://dx.doi.org/10.1021/bp0498037
- [55] Tamer I.M., Moo-Young M., Chisti Y.: Industrial & Engineering Chemistry Research 1998, 37, 1807. http://dx.doi.org/10.1021/ie9707432
- [56] Hwang K.J., You S.F., Don T.M.: Journal of the Chinese Institute of Chemical Engineers 2006, 37, 209.
- [57] Pat. Appl. US 5 536 419 (1996).
- [58] Berger E., Ramsay B.A., Ramsay J.A. et al.: Biotechnology Techniques 1989, 3, 227.
- [59] Mohammadi M., Hassan M.A., Phang L.Y. et al.: Environmental Engineering Science 2012, 29, 783.
- [60] Neves A., Müller J.: Biotechnology Progres 2012, 28, 1575. http://dx.doi.org/10.1002/btpr.1624
- [61] van Hee P., Elumbaring A.C., van der Lans R.G., Van derWielen L.A.: Journal of Colloid and Interface Science 2006, 297, 595. http://dx.doi.org/10.1016/j.jcis.2005.11.019
- [62] Tamer I.M., Moo-Young M.: Bioprocess Engineering 1998, 19, 459.
- [63] Jacquel N., Lo C.W., Wei Y. et al.: Biochemical Engineering Journal 2008, 39, 15. http://dx.doi.org/10.1016/j.bej.2007.11.029
- [64] Koller M., Niebelschütz H., Braunegg G.: Engineering in Life Sciences 2013, 13, 549. http://dx.doi.org/10.1002/elsc.201300021
- [65] Madkour M.H., Heinrich D., Alghamdi M.A. et al.: Biomacromolecules 2013, 14, 2963. http://dx.doi.org/10.1021/bm4010244
- [66] Zhang X., Luo R., Wang Z. et al.: Biomacromolecules 2009, 10, 707. http://dx.doi.org/10.1021/bm801424e
- [67] Gurieff N., Lant P.: Bioresource Technology 2007, 98, 3393. http://dx.doi.org/10.1016/j.biortech.2006.10.046
- [68] Salehizadeh H., Van Loosdrecht M.C.M.: Biotechnology Advances 2004, 22, 261. http://dx.doi.org/10.1016/j.biotechadv.2003.09.003
- [69] Kang S., Yu J.: RSC Advances 2014, 4, 14320. http://dx.doi.org/10.1039/C4RA00892H
- [70] Chen G.Q.,Wu Q.: Applied Microbiology and Biotechnology 2005, 67, 592. http://dx.doi.org/10.1007/s00253-005-1917-2
- [71] de Roo G., Kellerhals M.B., Ren Q. et al.: Biotechnology and Bioengineering 2002, 77, 717. http://dx.doi.org/10.1002/bit.10139
- [72] Ren Q., Grubelnik A., Hoerler M. et al.: Biomacromolecules. 2005, 6, 2290. http://dx.doi.org/10.1021/bm050187s
- [73] Harding K.G., Dennis J.S., Von Blottnitz H., Harrison S.T.L.: Journal of Biotechnology 2007, 130, 57. http://dx.doi.org/10.1016/j.jbiotec.2007.02.012
- [74] Hottle T.A., Bilec M.M., Landis A.E.: Polymer Degradation and Stability 2013, 98, 1898. http://dx.doi.org/10.1016/j.polymdegradstab.2013.06.016
- [75] Koller M., Sandholzer D., Salerno A. et al.: Resources, Conservation and Recycling 2013, 73, 64. http://dx.doi.org/10.1016/j.resconrec.2013.01.017
- [76] Kurdikar D., Fournet L., Slater S.C. et al.: Journal of Industrial Ecology 2000, 4, 107. http://dx.doi.org/10.1162/108819800300106410
- [77] Zhong Z.W., Song B., Huang C.X.: Materials and Manufacturing Processes 2009, 24, 519. http://dx.doi.org/10.1080/10426910902740120
- [78] Koller M., Atliæ A., Dias M. et al.: “Microbial PHAproduction from waste raw materials” in “Plastics from bacteria”, Springer, Berlin Heidelberg 2010, pp. 85—119.
- [79] AhnW.S., Park S.J., Lee S.Y.: Applied and Environmental Microbiology 2000, 66, 3624. http://dx.doi.org/10.1128/AEM.66.8.3624-3627.2000
- [80] Koller M., Hesse P., Bona R. et al.: Macromolecular Bioscience 2007, 7, 218. http://dx.doi.org/10.1002/mabi.200600211
- [81] Obruca S., Marova I., Melusova S., Mravcova L.: Annals of Microbiology 2011, 61, 947. http://dx.doi.org/10.1007/s13213-011-0218-5
- [82] Pantazaki A.A., Papaneophytou C.P., Pritsa A.G. et al.: Process Biochemistry 2009, 44, 847. http://dx.doi.org/10.1016/j.procbio.2009.04.002
- [83] Akaraonye E., Moreno C, Knowles J.C. et al.: Biotechnology Journal 2012, 7, 293. http://dx.doi.org/10.1002/biot.201100122
- [84] Albuquerque M.G.E., Eiroa M., Torres C. et al.: Journal of Biotechnology 2007, 130, 411. http://dx.doi.org/10.1016/j.jbiotec.2007.05.011
- [85] Sarkar K., Ray B., Banerjee R. et al.: IOSR Journal of Environmental Science, Toxicology and Food Technology 2014, 8, 26. http://dx.doi.org/10.9790/2402-08422631
- [86] Solaiman D.K., Ashby R.D., Hotchkiss Jr. A.T., Foglia T.A.: Biotechnology Letters 2006, 28, 157. http://dx.doi.org/10.1007/s10529-005-5329-2
- [87] Davis R., Kataria R., Cerrone F. et al.: Bioresource Technology 2013, 150, 202. http://dx.doi.org/10.1016/j.biortech.2013.10.001
- [88] Matsumoto K.I., Kobayashi H., Ikeda K. et al.: Bioresource Technology 2011, 102, 3564. http://dx.doi.org/10.1016/j.biortech.2010.09.098
- [89] Munoz A., Esteban L., Riley M.R.: Biotechnology and Bioengineering 2008, 100, 882. http://dx.doi.org/10.1002/bit.21854
- [90] Cerrone F., Sánchez-Peinado M.D.M., Rodríguez-Díaz M. et al.: Starch-Stärke 2011, 63, 236. http://dx.doi.org/10.1002/star.201000132
- [91] González-García Y., Rosales M.A., González-Reynoso O. et al.: Engineering in Life Sciences 2011, 11, 59. http://dx.doi.org/10.1002/elsc.201000118
- [92] Poomipuk N., Reungsang A., Plangklang P.: International Journal of Biological Macromolecules 2014, 65, 51. http://dx.doi.org/10.1016/j.ijbiomac.2014.01.002
- [93] Song Y., Matsumoto K.I., Tanaka T. et al.: Journal of Bioscience and Bioengineering 2013, 115, 12. http://dx.doi.org/10.1016/j.jbiosc.2012.08.004
- [94] Kang C.K., Lee H.S., Kim J.H.: Biotechnology Letters 1993, 15, 1017. http://dx.doi.org/10.1007/BF00129929
- [95] Yezza A., Fournier D., Halasz A., Hawari J.: Applied Microbiology and Biotechnology 2006, 73, 211. http://dx.doi.org/10.1007/s00253-006-0458-7
- [96] Cavalheiro J.M., Raposo R.S., de Almeida M.C.M.D. et al.: Bioresource Technology 2012, 111, 391. http://dx.doi.org/10.1016/j.biortech.2012.01.176
- [97] Hermann-Krauss C., Koller M., Muhr A. et al.: Archaea 2013, 2013, article ID 129268. http://dx.doi.org/doi:10.1155/2013/129268
- [98] Pappalardo F., Fragalà M., Mineo P.G. et al.: International Journal of Biological Macromolecules 2014, 65, 89. http://dx.doi.org/10.1016/j.ijbiomac.2014.01.014
- [99] Teeka J., Imai T., Kanno A. et al.: Fresenius Environmental Bulletin 2012, 21, 2282.
- [100] Špoljariæ I.V., Lopar M., Koller M. et al.: Journal of Biotechnology 2013, 168, 625. http://dx.doi.org/10.1016/j.jbiotec.2013.08.019
- [101] Špoljariæ I.V., Lopar M., Koller M. et al.: Bioresource Technology 2013, 133, 482. http://dx.doi.org/10.1016/j.biortech.2013.01.126
- [102] Yamane T., Chen X.F., Ueda S.: FEMS Microbiology Letters 1996, 135, 207. http://dx.doi.org/10.1111/j.1574-6968.1996.tb07991.x
- [103] Chee J.Y., Tan Y., Samian M.R., Sudes K.: Journal of Polymers and the Environment 2010, 18, 584. http://dx.doi.org/10.1007/s10924-010-0204-1
- [104] Obruca S., Marova I., Snajdar O. et al.: Biotechnology Letters 2010, 32, 1925. http://dx.doi.org/10.1007/s10529-010-0376-8
- [105] Povolo S., Romanelli M.G., Fontana F. et al.: Journal of Polymers and the Environment 2012, 20, 944. http://dx.doi.org/10.1007/s10924-012-0485-7
- [106] Romanelli M.G., Povolo S., Favaro L. et al.: International Journal of Biological Macromolecules 2014, 71, 21. http://dx.doi.org/10.1016/j.ijbiomac.2014.03.049
- [107] Solaiman D.K., Ashby R.D., Foglia, T.A.: Current Microbiology 1999, 38, 151.
- [108] Solaiman D.K., Ashby R.D., Foglia T.A.: Applied Microbiology and Biotechnology 2001, 56, 664. http://dx.doi.org/10.1007/s002530100692
- [109] Taniguchi I., Kagotani K., Kimura Y.: Green Chemistry 2003, 5, 545. http://dx.doi.org/10.1039/B304800B
- [110] Verlinden R.A., Hill D.J., Kenward M.A. et al.: AMB Express 2011, 1, 1. http://www.amb-express.com/content/1/1/11
- [111] Koller M., Salerno A., Muhr A. et al.: Materiali in Tehnologije 2013, 47, 5.
- [112] Muhr A., Rechberger E.M., Salerno A. et al.: Journal of Biotechnology 2013, 165, 45. http://dx.doi.org/10.1016/j.jbiotec.2013.02.003
- [113] Khosravi-Darani K., Mokhtari Z.B., Amai T., Tanaka K.: Appl. Microbiol. Biotechnol. 2013, 97, 1407. http://dx.doi.org/10.1007/s00253-012-4649-0
- [114] Pat. Appl. US 13 421 771 (2012).
- [115] Rostkowski K.H., Criddle C.S., Lepech M.D.: Environmental Science & Technology 2012, 46, 9822. http://dx.doi.org/10.1021/es204541w
- [116] Ishizaki A., Tanaka K., Taga N.: Applied Microbiology and Biotechnology 2001, 57, 6. http://dx.doi.org/10.1007/s002530100775
- [117] Bhati R., Mallick N.: Journal of Chemical Technology and Biotechnology 2012, 87, 505. http://dx.doi.org/10.1002/jctb.2737
- [118] Samantaray S., Mallick N.: Journal of Applied Phycology 2012, 24, 803. http://dx.doi.org/10.1007/s10811-011-9699-7
- [119] Titz M., Kettl K.H., Shahzad K. et al.: Clean Technologies and Environmental Policy 2012, 14, 495. http://dx.doi.org/10.1007/s10098-012-0464-7
- [120] Shahzad K., Kettl K.H., Titz M. et al.: Clean Technologies and Environmental Policy 2013, 15, 525. http://dx.doi.org/10.1007/s10098-013-0608-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c778cf0-e863-4d37-8a4b-861e0d9c009d