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Abstract
The goal of this study is to present a new theory known as the three-temperature memory-dependent derivative (MDD) of ultra-
sound stress waves in functionally graded anisotropic (FGA) smart materials. It is extremely difficult to address the difficulties 
related to this theory analytically due to its severe nonlinearity. As a result, we suggest a new boundary element method (BEM) 
to solve such equations. The suggested BEM technique incorporates the benefits of both continuous and discrete descriptions. 
The numerical results are visually represented to demonstrate the impacts of MDD three temperatures and anisotropy on the 
ultrasound stress waves in FGA smart materials. The numerical findings verify the proposed methodology’s validity and accu-
racy. We may conclude that the offered results are useful for comprehending the FGA smart materials. As a result, our findings 
contribute to the advancement of the industrial applications of FGA smart materials.
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1. Introduction

The development of smart structures in coming years is 
likely to be the most important task in a variety of sci-
entific and technological fields such as bioengineering, 
informatics, aerospace engineering, microelectronics, 
medical treatment, energy, safety engineering, trans-
portation, life science, and military technologies. As 
a result, various applications and industries are being 
created to support the growing importance of smart ma-
terials research (Fahmy et al., 2021).

The classical thermo-elasticity (CTE) theory of Du-
hamel (1837) and Neumann (1885), has two shortcom-
ings: First, there are no elastic terms in the heat equa-

tion and secondly the heat equation predicts unlimited 
heat wave velocity. Biot (1956) developed the classical 
coupled thermo-elasticity (CCTE) theory to combat the 
primary shortcomings of CTE. However, both theories 
share the second shortcoming. As a result, many gener-
alizations of Fourier’s heat law have been developed to 
predict finite speeds of heat waves, such as the extended 
thermo-elasticity (ETE) theory of Lord and Shulman (L-S) 
(1967), temperature-rate-dependent thermo-elasticity 
(TRDTE) theory Green and Lindsay (G-L) (1972), three 
linear generalized thermoelasticity models of Green and 
Naghdi (G-N) (1992, 1993), low-temperature thermo-
elasticity model of Hetnarski and Ignaczak (H-I) (1996), 
dual phase-lag thermoelasticity (DPLTE) theory of  
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Tzou (1997) and Chandrasekharaiah (1998), Youssef 
(2006) two-temperature generalized thermoelasticity 
theory, three-phase-lag thermoelasticity (TPLTE) theory 
of Roy Choudhuri (2007), and three-temperature gener-
alized thermoelasticity of Fahmy (2019). 

Recently, the field of fractional calculus has at-
tracted the interest of researchers in various areas in-
cluding heat conduction, biophysics, control theory, 
fluid mechanics, electrochemistry, electrical engineer-
ing, bioengineering, viscoelasticity, viscoplasticity, bi-
ology, solid mechanics, signal and image processing, 
control theory and finance. 

In 1819 Lacroix suggested the n-th derivative for 
the function y = xm as:
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Laurent suggested the integration of arbitrary or-
der v > 0 as follows:
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Cauchy introduced the following fractional-order 
derivative:
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In 1967, Caputo suggested the following fraction-
al derivative:
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Diettelm (1997) introduced the following Caputo 
derivative:
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Wang and Li (2011) suggested the following 
MDD:
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On the basis of Fahmy (2021a), we can write:
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ω > 0, 0 ≤ K(τ – ξ) ≤ 1 for ξ ∈ [τ – ξ, τ]

Now, we consider the following special case  
(K(τ – ξ) ≡ 1):

D f f d f f f�
� �

�

�
�

� �
� � �

�
�( ) ( )

( ) ( )
( )� � �

� �
� �

�
�

1  (10)

where:

D f f f f
� �

�
�

� � �
�

( ) lim
( ) ( )

�
�
�

�
� �

�0  
(11)

In the present paper, the boundary element meth-
od (Banerjee & Butterfield, 1981; Fahmy, 2011, 2012a, 
2012b, 2013, 2018, 2021b, 2021c, 2021d, 2021e; Wro-
bel & Brebbia, 1987) has been implemented success-
fully for solving three-temperature memory dependent 
derivative (MDD) problems of ultrasound stress waves 
in functionally graded anisotropic (FGA) smart mate-
rials. The numerical results are depicted graphically 
to show the influences of the three temperatures and 
anisotropy on the nonlinear thermal stress compo-
nents. The validity, efficiency, and accuracy of our pro-
posed BEM technique were confirmed by comparing 
our BEM obtained results with the corresponding finite 
element method (FEM) results.

2. Formulation of the problem
The geometry of the considered problem is shown in 
Figure 1 for a smart structure that occupies the region  
R = {0 < x < β_, 0 < y < α_, 0 < z < γ_} bounded by a closed 
surface S as shown in Figure 1, where Si (i = 1, 2, 3, 4) 
such that S1 + S2 = S3 + S4 = S. The governing equations 
for the ultrasound stress waves in FGA smart materials 
with memory-dependent derivatives can be expressed 
as (Fahmy, 2020):

σij,j + τij,j + ρFi = ρu ̈ i  (12)

Di,i = 0 (13)
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where:
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where: σij – force stress tensor; Di – electric displace-
ment; Fi – mass force vector; εij – strain tensor; εijk – al-
ternate tensor; ui – displacement vector; ρ – constant 
elastic moduli; Cijkl (Cijkl = Cklij = Cjikl) – density; 
eijk – piezoelectric tensor; e – dilatation; 𝕗ik – permit-
tivity tensor; Ek – electric field vector; βij (βij = βji) – 
stress–temperature coefficients.

Fig. 1. Geometry of the considered problem

According to Fahmy (2019), the three-tempera-
ture heat conduction equations are:
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where: e, i, p – electron, ion, and phonon; (ce, ci, cp) – 
specific heat capacities; (𝕂e, 𝕂i, 𝕂p) – conductive co-
efficients; 𝕎ei – electron-ion coefficient; 𝕎ep  – elec-
tron-phonon coefficient; (Te, Ti, Tp) – temperature 
functions where: τij,j = μ0

i ϵijfJjHf – i-component of the 
Lorentz force; J(τ) = (J0τ/τ3

2)e-τ/τ3  – temporal profile of 
non-Gaussian laser pulse; Q(x,τ) = [(1 – R)/x0]e

(-xa/x0)J(τ) –  
total energy intensity.

3. BEM solution of temperature field

On the basis of Fahmy (2019), equations (16)–(18) can 
be expressed as:
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F(r,τ) = βabTα0[Åδ1ju̇a,b + (τ0 + δ2j)u ̈ a,b] (25)

where: Å – unified parameter which introduced to con-
solidate all theories into a unified equations system, 
ua – displacement vector.
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where ωα(> 0) (α = e, i, and p) are the delay times.
The total energy is:
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Now, we consider the following initial and bound-
ary conditions:
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Now, we assume that the fundamental solutions Tα
* 

satisfies:

LabTα
*  = fab   (31)

By applying the procedure of Fahmy (2019) to 
(19), we get:

CT D T q T q dSd

D bT qdRd T T

S

R

i

R

�
�

� �

�

�
�

�

� �

�

�

� � �

�

� �

� �

��

�� �

   

   

[ ]

0

0 ���0

dR
 

(32)

which can be written as:
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where fji
–1 are the coefficients of F–1 as defined in Wro-

bel and Brebbia (1987) as:

{F}ji = f j(ri)  (39)

By discretizing (36) and using (38), we obtain 
(Fahmy, 2019):
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By substitution from (44)–(46) into (40), we get:
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Hence, we obtain:

𝕒X = 𝕓 (48)

4. BEM solution of  
the displacement field

On the basis of the weighted residual method, equa-
tions (12) and (13) in terms of the weighting functions 
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By integrating the first term of (49) and (50) by 
parts, we have:
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On the basis of Erigen (1968), the elastic stress 
may be written as:

σij = 𝔸ijklεkl,  (60)

where:

𝔸ijkl = 𝔸klij (61)

Hence, Equation (59) can be rewritten as:
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Integration by parts again, yields:
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The weighting functions of Ui = ∆n can be ex-
pressed as:
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Thus, we obtain (see Fahmy et al., 2021):
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Therefore, we can write (70) as:
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Equation after integration can be written as:

C i𝕢i = –
j

Ne
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(74)

By using the following representation:
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ij
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    if  
(75)

Thus, we can write (74) as follows:
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 (76)

The global matrix equation for all i nodes can be 
expressed as:

ℍℚ = 𝔾ℙ + 𝔻Θ + 𝔽𝕊� (77)

where: ℚ – displacements; ℙ  – tractions; Θ – electric 
potential; 𝕊� – electric potential gradient vector. 

Which can be written in the following form:

𝔸𝕏 = 𝔹� (78)

For solving the resulting linear algebraic system 
of equations, an explicit staggered algorithm of Fahmy 
(2019) based on the communication-avoiding Arnoldi 
(CA-Arnoldi) preconditioner is developed as follows:

Step. 1. We obtain the temperature field in terms of 
the displacement field from (48).

Step. 2. We forecast the displacement field and, as 
a result, the temperature field.

Step. 3. From (78), we correct the displacement 
field using the calculated temperature.

5. Numerical results and discussions

The proposed methodology in this work, if implement-
ed, should be applicable to a wide range of three-tem-
perature smart structures problems. There are no 
available literature for comparison due to the nature 
of the problems under consideration. As a result, some 
literature can be thought of as special examples of our 
BEM results. The results of the special example under 
examination are presented in Figures 3–6 to show the 
impacts of MDD three temperatures and anisotropy 
on the nonlinear thermal stress waves in FGA smart 
structures.

The boundary of the considered BEM model has 
been discretized into 42 linear boundary elements and 
68 internal points, as shown in Figure 2. Also, the do-
main of the considered FEM model has been discret-
ized into 1896 second-order quadrilateral elements and 
5986 nodes.

Fig. 2. Boundary element model of the considered problem

Fig. 3. Variation of the thermal stress waves with time τ 
 for Te, Ti and Tp (isotropic material)

Figure 3 shows the variation of the thermal stress 
waves with time τ for Te, Ti and Tp in an isotropic mate-
rial. It can be seen from this figure that the three tem-
peratures have a significant effect on the thermal stress 
waves of functionally graded isotropic smart materials.

Fig. 4. Variation of the thermal stress waves with time τ  
for Te, Ti and Tp (orthotropic material)

ℍ̂ 
ℍ̂ 

ℍ
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Figure 4 illustrates the variation of the thermal 
stress waves with time τ for Te, Ti and Tp in an orthotro-
pic material. The three temperatures have a considerable 
effect on the thermal stress waves of functionally graded 
orthotropic smart materials, as seen in this figure.

Fig. 5. Variation of the thermal stress waves with time τ  
for Te, Ti and Tp  (anisotropic material)

Figure 5 illustrates the variation of the thermal 
stress waves with time τ for Te, Ti and Tp  in an anisotro-
pic material. The three temperatures have a considerable 
effect on the thermal stress waves of functionally graded 
anisotropic smart materials, as seen in this figure.

Fig. 6. Variation of the thermal stress waves with time τ 
 for boundary and finite element methods

The validity and correctness of our suggested mod-
el have been confirmed by comparing the one-dimen-
sional BEM results graphically with those produced 

using the finite element method (FEM) of Shakeriaski 
and Ghodrat (2020). These results show that the BEM 
results are in excellent agreement with the FEM results.

The domain methods include the solution of the 
entire domain, including the boundary domain of the 
problems of the current theory, yet the proposed BEM 
only needs to solve the boundary unknowns. As a re-
sult, BEM can be used to solve such problems effi-
ciently than domain methods. Based on the performed 
research, it is possible to conclude that the proposed 
BEM technique is efficient and stable for problems of 
the current theory. BEM users only need to deal with 
real geometry boundaries when dealing with closed or 
open boundary problems. The problems of the current 
theory are open boundary problems. FDM and FEM 
employ artificial boundaries that are far from the true 
structure to solve these open boundary problems. These 
artificial boundaries also pose a significant difficulty for 
FDM and FEM users.

6. Conclusion

The goal of this study is to present a novel theory 
known as three-temperature memory-dependent de-
rivative (MDD) of ultrasound stress waves in func-
tionally graded anisotropic (FGA) Smart Materials. 
Because of the nonlinear anisotropic mechanical prop-
erties of the investigated smart materials, it is extreme-
ly difficult to address the difficulties of this theory. As 
a result, we suggest a novel boundary element model 
for dealing with such problems. The suggested BEM 
technique incorporates the benefits of both continuous 
and discrete descriptions because the CA kernels of 
s-step Krylov techniques are faster than the kernels of 
ordinary Krylov techniques. As a result, to solve the 
linear systems emerging from the BEM discretization, 
we developed an explicit staggered approach based on 
the CA-Arnoldi technique. The numerical findings are 
graphed to show the impact of MDD three tempera-
tures and anisotropy on the laser-generated waves in 
FGA smart structures. The numerical results further 
indicate the suggested technique’s validity, precision, 
and efficiency. The effective methodology provided 
here can be used to solve a wide range of FGA smart 
materials problems.
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