PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen peroxide (H2O2) : a review of its use in homemade explosives

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nadtlenek wodoru (H2O2) : prekursor improwizowanych materiałów wybuchowych
Języki publikacji
EN
Abstrakty
EN
This article presents an overview of hydrogen peroxide and its use in the illicit production of homemade explosives. Hydrogen peroxide is used extensively around the world in many industries, including aerospace. It is also used as the main ingredient in some household cleaning products. However, it has been illicitly used to create both primary and secondary homemade explosives in recent numerous terrorist attacks across Europe. In this article, we describe the historical background and the characteristics of the substance, the aspects concerning its manufacture and present-day use as a main explosive component or direct chemical precursor of homemade explosives, and the options for detection.
PL
W artykule zostały omówione najważniejsze, improwizowane materiały wybuchowe, których chemicznym prekursorem jest nadtlenek wodoru. Roztwory nadtlenku wodoru są intensywnie używane w wielu dziedzinach życia, począwszy od przemysłu kosmicznego, a skończywszy na wybielaczach stosowanych w gospodarstwach domowych. Niestety, medium to zostało także wykorzystane do uzyskiwania nielegalnych materiałów wybuchowych, których użyto miedzy innymi w atakach terrorystycznych w Europie Zachodniej kilka lat temu. Dlatego też w prezentowanym tutaj przeglądzie przedstawiamy historyczny rys dotyczący tego interesującego związku chemicznego, ale także aspekty związane z jego użyciem jako prekursora nielegalnych materiałów wybuchowych. Opisane zostały również podstawowe sposoby detekcji tychże związków.
Rocznik
Tom
Strony
5--13
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
  • European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
  • European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
  • European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
  • European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
  • European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
  • European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
Bibliografia
  • [1] Constantine M., Cain E. 1967. Hydrogen peroxide handbook. Defence Technical Information Centre, Canoga Park.
  • [2] Application areas. https://active-oxygens.evonik.com/product/h2o2/en/application-areas/ [accessed on 23.10.2019].
  • [3] Report JRC Geel on HP based explosives, 2018 [not published].
  • [4] Matyas R., Chylkova J. 2013. Study of TATP: method for determination of residual acids in TATP. Forensic Sci. Int. 228.
  • [5] Sceibler H. 1929. Memoriam: Richard Wolffenstein. Angew. Chemie 42 (51): 1149-1151.
  • [6] Jones C.W. 1999. Applications of hydrogen peroxide and derivatives. Cambridge: Royal Society of Chemistry, ISBN 978-0-85404-536-5.
  • [7] Schumb W., Satterfield C.N., Wentworth R.L. 1955. Hydrogen peroxide. A.C.S. Monograph 128, New York: Reinhold Publishing Corporation.
  • [8] Bowden P.R., Tappan B.C., Manner V.W., Preston D.N., Scott B.L. 2017. Characterization of diacetone diperoxide (DADP). AIP Conf. Proc. 1793, 040010 https://doi.org/10.1063/1.4971504 [published online 13.01.2017].
  • [9] Matyas R., Pachman J. 2010. Study of TATP: Influence of reaction conditions on product composition. Propellants Explos. Pyrotech. 35 (1): 31-37.
  • [10] Egorshev V., Sinditskii V.P., 2013. A comparative study on two explosive acetone peroxides. Thermochim. Acta 574: 154-161.
  • [11] Oxley J.C., Smith J.L., Shinde K., Morgan J. 2005. Determination of the vapour density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explos. Pyrotech. 30 (2): 127-130.
  • [12] Historical survey of hydrogen peroxide/fuel explosives. Sandia National Laboratories and U.S. Department of Energy, Report SAND2015-0133R, 2015.
  • [13] Baker A. W. 1946. Hydrogen peroxide explosives. US Patent 3047441.
  • [14] Shanley E. S. 1948. Peroxide glycerol explosive. US Patent 2452074.
  • [15] Bouillet E., Colery J.-C., Declerck C., Ledoux P. 1990. Process for the manufacture of explosive cartridges, and explosives cartridges obtained using the said process. US Patent 4942800.
  • [16] Araos M., Onederra I. 2013. Detonation characteristics of alternative mining explosives based on hydrogen peroxide as the oxidising agent. World Conf. on Explosives and Blasting, 7th, Moscow, Russia, 182-186.
  • [17] Schreck A., Knorr A., Wehrstedt K.D., Wandrey P.A., Gmeinwieser T., Steinbach J. 2004. Investigation of the explosive hazard of mixtures containing hydrogen peroxide and different alcohols. J. Hazard. Mater. 108.
  • [18] Gaskell D.R. 2011. Forensic investigation of explosions. 2nd Ed., Boca Raton: CRC Press; eBook ISBN 9780429250156.
  • [19] Eiss M.I., Giesecke P. 1959. Colorimetric determination of organic peroxides. Anal. Chem. 31 (9): 1558-1560.
  • [20] Amelin V.G., Kolodkin I.S., Irinina Y.A. 2000. Test method for the determination of hydrogen peroxide in atmospheric precipitation and water using indicator papers. J. Anal. Chem. 55 (4): 374-377.
  • [21] Zaribafan A., Haghbeen K., Fazli M., Akhondali A. 2014. Spectrophotometric method for hydrogen peroxide determination through oxidation of organic dyes. Environ. Stud. Persian Gulf 1 (2): 93-101.
  • [22] Tang J., Wang B., Wu Z., Han X., Dong S., Wang E. 2003. Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Biosens. Bioelectron. 18 (7): 867-872.
  • [23] Deadman B.J., Hellgardt K., Hii K.K.(Mimi). 2017. A colorimetric method for rapid and selective quantification of peroxodisulfate, peroxomonosulfate and hydrogen peroxide. React. Chem. Eng. (4):462-466
  • [24] Matsubara C., Kudo K., Kawashita T., Takamura K. 1985. Spectrophotometric determination of hydrogen peroxide with titanium 2-((5-bromopyridyl)azo)-5-(N-propyl-N-sulfopropylamino)phenol reagent and its application to the determination of serum glucose using glucose oxidase. Anal. Chem. 57 (6): 1107-1109.
  • [25] Wolff S.P. 1994. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 233: 182-189.
  • [26] Xu M. 2014. Trace vapour detection of hydrogen peroxide: an effective approach to identification of improvised explosive devices. PhD Dissertation, The University of Utah, Department of Materials Science and Engineering.
  • [27] European Civil Aviation Conference (ECAC) – Common Evaluation Process (CEP). https://www.ecacceac. org/cep [accessed on 2.12.2019].
  • [28] Liscouski R., McGann W. 2016. The evolving challenges for explosive detection in the aviation sector and beyond. CTC Sentinel 9 (5): 1-6.
  • [29] Explosives testing kits. http://www.identa-corp.com/products/explosives-testing-kits/tatp-peroxide/[accessed on 23.10.2019].
  • [30] Substance information – hydrogen peroxide. https://echa.europa.eu/substance-information/-/substanceinfo/100.028.878 [accessed on 23.10.2019].
  • [31] European Commission – explosives precursors. https://ec.europa.eu/home-affairs/what-we-do/policies/crisis-and-terrorism/explosives/explosives-precursors_en [accessed on 23.10.2019].
  • [32] Proposal for a Regulation of the European Parliament and of the Council on the marketing and use of explosives precursors. http://www.europarl.europa.eu/legislative-train/theme-area-of-justice-andfundamental-rights/file-marketing-and-use-of-explosive-precursors [accessed on 23.10.2019].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c6d1ebf-7016-44ad-910f-614be4ccf891
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.