Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a proposal for a formalised approach to hull shape optimisation with respect to total resistance, by fine-tuning longitudinal volume distribution. An algorithm for automated modification of the hull is presented, allowing for varying the sectional area distribution with a negligible influence on the resulting displacement. Computational fluid dynamics (CFD) solver STAR-CCM+ and computer computer-aided design (CAD) software NX were used to search the optimal volume distribution of selected parent shapes, with respect to total resistance. The bow part and the aft part were optimised separately. The resulting resistances of the selected optimal shapes were then verified by means of scale model tests, realised in the towing tank at the Maritime Advanced Research Centre (CTO) S.A. A noticeable gain in total resistance was achieved and confirmed by experimental tests. The proposed approach seems to be a promising method for relatively quick parametric optimisation of the designed hull shapes; it is also applicable for generic CFD optimisation studies.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
11--20
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Maritime Advanced Research Centre S.A. Ship Hydromechanics Division Gdansk Poland
Bibliografia
- 1. Y. Lu, J. Wu, W. Li and Y. Wu, ‘A new six-dof parallel mechanism for captive model test’, Polish Maritime Research, No. 3 (107), Vol. 27; pp. 4-15, 2020, DOI: 10.2478/pomr-2020-0041 27.
- 2. S. Bielicki, ‘Prediction of ship motions in irregular waves based on response amplitude operators evaluated experimentally in noise waves’, Polish Maritime Research, No. 1(109), Vol. 28, pp. 16-27, 2021, DOI: 10.2478/pomr-2021-0002.
- 3. Q. Wang, P. Yu, B. Zhang, G. Li, ‘Experimental Study and Numerical Simulation of the Water Entry of a Ship-Like Symmetry Section with an Obvious Bulbous Bow’, Polish Maritime Research, No. 3(111), Vol. 28, pp. 16-34, 2021, DOI: 10.2478/pomr-2021-0031.
- 4. A. Karczewski, M. Kunicka, ‘Influence of the Hull Shape on the Energy Demand of a Small Inland Vessel with Hybrid Propulsion’, Polish Maritime Research, No. 3(111), Vol. 28, pp. 16-34, 2021, DOI: 10.2478/pomr-2021-0032.
- 5. H.C. Raven, ‘A solution method for the nonlinear ship wave resistance problem’, Ph.D. dissertation, Delft Univ. Techn., 1996.
- 6. A. Stück, ‘Adjoint Navier-Stokes Methods for Hydrodynamic Shape Optimisation’, Ph.D. dissertation, Technische Universitat Hamburg-Harburg, 2012.
- 7. M. Gundelach, ‘Sketched Parametric Modeling in CFD Optimisation’, Master thesis, Feb/2017, University of Rostock, Germany.
- 8. H. Nowacki, D. Liu, and X. Lü, ‘Fairing bézier curves with constraints’, Computer Aided Geometric Design, 7(1–4), 43–55 (1990).
- 9. S. Harries, ‘Parametric Design and Hydrodynamic Optimisation of Ship Hull Forms’, Mensch-und-Buch-Verlag, Berlin (1998).
- 10. S. Harries, C. Abt, ‘Parametric curve design applying fairness criteria’, International Workshop on Creating Fair and ShapePreserving Curves and Surfaces (1998).
- 11. I. Biliotti, S. Brizzolara, M. Viviani, G. Vernengo, D. Ruscelli, M. Galliussi, D. Guadalupi, and A. Manfredini, ‘Automatic parametric hull form optimisation of fast naval vessels’, Proceedings of the Eleventh International Conference on Fast Sea Transportation (FAST 2011), 2011.
- 12. S. Han, Y.-S. Lee, and Y.B. Choi, ‘Hydrodynamic hull form optimisation using parametric models’, Journal of Marine Science and Technology, 17(1), 1–17, 2012, DOI: 10.1007/ s00773-011-0148-8.
- 13. M. Brenner, V. Zagkas, S. Harries, and T. Stein, ‘Optimisation using viscous flow computations for retrofitting ships in operation’, Proceedings of the 5th International Conference on Computational Methods in Marine Engineering, MARINE, 2013.
- 14. Y. Feng, O. el Moctar, and T.E. Schellin, ‘Parametric Hull Form Optimisation of Containerships for Minimum Resistance in Calm Water and in Waves’, Journal of Marine Science and Application 20, 670–693, 2021. DOI: 10.1007/ s11804-021-00243-w.
- 15. G. Vernengo, D. Villa, S. Gaggero, and M, Viviani, ‘Interactive design and variation of hull shapes: pros and cons of different CAD approaches’, International Journal on Interactive Design and Manufacturing, 14, pp. 103-114, 2020. DOI: 10.1007/ s12008-019-00613-3.
- 16. D. Peri, and E.F. Campana, ‘Multidisciplinary design optimisation of a naval surface combatant’, Journal of Ship Research 47(1), 1–12, 2003, DOI: 10.5957/jsr.2003.47.1.1.
- 17. F. Perez, and J.A. Clemente, ‘Constrained design of simple ship hulls with b-spline surfaces’, Computer Aided Design 43(12), 1829–1840, 2011, DOI:10.1016/j.cad.2011.07.008.
- 18. H.J. Choi, ‘Hull-form optimisation of a container ship based on bell-shaped modification function’, International Journal of Naval Architecture and Ocean Engineering 7(3), 478–489, 2015, DOI: 10.1515/ijnaoe-2015-0034.
- 19. G.G. Lorentz, ‘Bernstein Polynomials’, University of Toronto Press, 1953.
- 20. H. Lackenby, ‘On the systematic geometrical variation of ship forms’, Trans. INA 92, 289–315, 1950.
- 21. Y. Zhang, X. P. Wu, M. Y. Lai, G. P. Zhou and J. Zhang, ‘Feasibility Study of Rans in Predicting Propeller Cavitation in Behind-Hull Conditions’, Polish Maritime Research, No. 4(108), Vol. 27, pp. 26-35, 2020, DOI: 10.2478/ pomr-2020-0063.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c65a5dc-f4e1-4f98-abb3-683ff505cea1