PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of spatial sound recording techniques with usage of ambisonics and object-based audio

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article spatial audio recording techniques are compared: scene-based audio and object-based audio. The study involved mixing recordings from a higher-order ambisonic microphone and support microphones, ambisonically encoded on a virtual sphere. The recordings were combined in different spatial resolution variations by manipulating the ambisonic order. A MUSHRA-like test was conducted, taking into consideration the room divergence effect. The experiment used binaural rendering with headtracking. The results were analyzed using linear mixed models, providing insights into spatial audio recording techniques.
Twórcy
  • Gdańsk University of Technology
  • Gdańsk University of Technology
Bibliografia
  • [1] C. Hugonnet and P. Walder, Stereophonic sound recording: theory and practice. John Wiley & Sons, 1997.
  • [2] J. Borwick, Sound Recording Practice, 4th ed. Association of Professional Recording Studios, 1996.
  • [3] D. M. Huber, E. Caballero, and R. E. Runstein, Modern Recording Techniques, 10th ed. Focal Press, 2023.
  • [4] F. Lluis, N. Meyer-Kahlen, V. Chatziioannou, and A. Hofmann, “Direction specific ambisonics source separation with end-to-end deep learning,” Acta Acustica, vol. 7, p. 29, 2023. https://doi.org/10.1051/aacus/2023020
  • [5] N. Vryzas, M. E. Stamatiadou, L. Vrysis, and C. Dimoulas, “Multichannel mobile audio recordings for spatial enhancements and ambisonics rendering,” in Proc. 2023 Immersive and 3D Audio: from Architecture to Automotive (I3DA), Bologna, Italy, 2023, pp. 1-6. https://doi.org/10.1109/I3DA57090.2023.10289599
  • [6] J. Peng, S. Zhao, and G. Wang, “A Source Separation Approach for the Combined SBA Signals in the Joint Representation of OBA and SBA,” in Proc. 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023, pp. 554-558. https://doi.org/10.1109/ICSIP57908.2023.10270834
  • [7] J.-M. Jot, T. Carpentier, and O. Warusfel, “Perceptually Motivated Spatial Audio Scene Description and Rendering for 6-DoF Immersive Music Experiences,” in Proc. 2023 Immersive and 3D Audio: from Architecture to Automotive (I3DA), Bologna, Italy, 2023, pp. 1-14. https://doi.org/10.1109/I3DA57090.2023.10289196
  • [8] P. Małecki, J. Stefańska, and M. Szydłowska, “Assessing Spatial Audio: A Listener-Centric Case Study on Object-Based and Ambisonic Audio Processing,” Archives of Acoustics, Jul. 2024, https://doi.org/10.24425/aoa.2024.148798
  • [9] K. Yi and B. Xie, “Local Ambisonics panning method for creating a virtual source in the vertical plane of the frontal hemisphere,” Applied Acoustics, Aug. 2020, https://doi.org/10.1016/J.APACOUST.2020.107319
  • [10] D. Menzies and F. M. Fazi, “Ambisonic Decoding for Compensated Amplitude Panning,” IEEE Signal Processing Letters, Feb. 2019, https://doi.org/10.1109/LSP.2019.2895275
  • [11] P. Cairns and D. Moore, “Switched Spatial Impulse Response Convolution as an Ambisonic Distance-Panning Function,” in Proc. 5th International Conference on Spatial Audio (ICSA 2019), S. Werner and S. Göring, Eds. Ilmenau, Germany: Ilmenau Media Services, 2019, pp. 99-106. https://doi.org/10.22032/dbt.39961
  • [12] F. Zotter and M. Frank, “Ambisonic Amplitude Panning and Decoding in Higher Orders,” in Ambisonics: A Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement and Virtual Reality, Springer, 2019, pp. 53-98. https://doi.org/10.1007/978-3-030-17207-7_4
  • [13] B. Mróz, P. Odya, P. Danowski, and M. Kabaciński, “A commonly-accessible toolchain for live streaming music events with higher-order ambisonic audio and 4K 360 vision,” in Audio Engineering Society International Conference on Spatial and Immersive Audio, Huddersfield, UK, 2023.
  • [14] H. Mai, B. Xie, and J. Jiang, “Influence of the Number of Loudspeakers on the Timbre in Mixed-Order Ambisonics Reproduction,” International Conference on Acoustics, Speech, and Signal Processing, Apr. 2018, https://doi.org/10.1109/ICASSP.2018.8462009
  • [15] S. E. Favrot, M. Marschall, J. Käsbach, J. M. Buchholz, and T. Weller, “Mixed-Order Ambisonics Recording and Playback for Improving Horizontal Directionality,” Journal of The Audio Engineering Society, Oct. 2011.
  • [16] G. Chen, V. Nayak, S. Thagadur Shivappa, S. M. A. Salehin, and N. G. Peters, “System and method for mixing and adjusting multi-input ambisonics,” U.S. Patent 10,390,166, issued Aug. 20, 2019.
  • [17] C. Hold, L. McCormack, A. Politis, and V. Pulkki, “Optimizing Higher-Order Directional Audio Coding with Adaptive Mixing and Energy Matching for Ambisonic Compression and Upmixing,” in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics - WASPAA 2023, Oct. 2023. https://doi.org/10.1109/WASPAA58266.2023.10248179
  • [18] B. T. West, K. B. Welch, and A. T. Galecki, Linear Mixed Models: A Practical Guide Using Statistical Software, 3rd ed. Boca Raton, FL, USA: Chapman and Hall/CRC, 2022. https://doi.org/10.1201/9781003181064
  • [19] O. A. López, A. López, and J. Crossa, “Linear Mixed Models,” in Multivariate Statistical Machine Learning Methods for Genomic Prediction, Springer, 2022, pp. 141-170. https://doi.org/10.1007/978-3-030-89010-0_5
  • [20] F. Korner-Nievergelt, T. Roth, S. von Felten, J. Guélat, B. Almasi, and P. Korner-Nievergelt, “Linear Mixed Effects Models,” in Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN, Academic Press, 2015, pp. 95-114. https://doi.org/10.1016/B978-0-12-801370-0.00007-1
  • [21] G. M. Fitzmaurice and N. M. Laird, “Linear Mixed Models,” in International Encyclopedia of the Social & Behavioral Sciences, 2nd ed., Elsevier, 2015, pp. 162-168. https://doi.org/10.1016/B978-0-08-097086-8.42016-7
  • [22] T. K. Koerner and Y. Zhang, “Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies,” Brain Sciences, Feb. 2017, https://doi.org/10.3390/BRAINSCI7030026
  • [23] H. Singmann and D. Kellen, “An Introduction to Mixed Models for Experimental Psychology,” in New Methods in Cognitive Psychology, Routledge, 2019, pp. 4-31. https://doi.org/10.4324/9780429318405-2
  • [24] T. Rudzki, D. Murphy, and G. Kearney, “A DAW-based interactive tool for perceptual spatial audio evaluation,” in Audio Engineering Society Convention 145, New York, USA, 2018.
  • [25] B S. Werner, F. Klein, T. Mayenfels, and K. Brandenburg, “A summary on acoustic room divergence and its effect on externalization of auditory events,” in 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 2016, pp. 1-6. https://doi.org/10.1109/QoMEX.2016.7498973
  • [26] . Bernschütz, “A spherical far field HRIR/HRTF compilation of the Neumann KU 100,” in Proceedings of the 40th Italian (AIA) Annual Conference on Acoustics and the 39th German Annual Conference on Acoustics (DAGA), Merano, Italy, 2013.
  • [27] D. A. Dick and M. C. Vigeant, “An investigation of listener envelopment utilizing a spherical microphone array and third-order ambisonics reproduction.,” Journal of the Acoustical Society of America, Apr. 2019, https://doi.org/10.1121/1.5096161
  • [28] F. del Solar Dorrego and M. C. Vigeant, “A study of the just noticeable difference of early decay time for symphonic halls,” Journal of the Acoustical Society of America, vol. 151, no. 1, pp. 80-94, Jan. 2022. https://doi.org/10.1121/10.0009167
  • [29] T. Okamoto, Z. L. Cui, Y. Iwaya, and Y. Suzuki, “Implementation of a high-definition 3D audio-visual display based on higher-order ambisonics using a 157-loudspeaker array combined with a 3D projection display,” IEEE International Conference on Network Infrastructure and Digital Content, Dec. 2010, https://doi.org/10.1109/ICNIDC.2010.5657843
  • [30] N. Barrett, “The perception, evaluation and creative application of high order ambisonics in contemporary music practice,” Ircam Musical Research Residency report, 2012.
  • [31] S. Bertet, J. Daniel, L. Gros, E. Parizet, and O. Warusfel, “Investigation of the perceived spatial resolution of higher order Ambisonics sound fields: A subjective evaluation involving virtual and real 3D microphones,” in 30th Audio Engineering Society International Conference: Intelligent Audio Environments, Mar. 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c6089ca-0a15-4225-80d7-6b1bb790cf60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.