Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hydraulic fracturing (HF) technology has been widely used in the coal mining industry. This technology can effectively increase the permeability coefficient of low-permeability coal seams, thereby enhancing the gas drainage efficiency and increasing the safety of coal mining. To study the correlation between the fluid injection pressure (FIP) and the unit fluid injection quantity (UFIQ) during hydraulic fracturing and considering the limitations of laboratory and numerical simulation methods, this study employs a field engineering experiment at the 1703 mining working face of Jin’zhong Coal Mine in Sichuan Province as the test site. Through the monitoring and analysis of the FIP and the UFIQ during the whole HF process of coal seam drilling, it is found that there is a certain correlation between the FIP and the UFIQ, the FIP will appear obvious “decreases-recovery” phenomenon when the coal cracks and cracks propagation. And in this process, the UFIQ will appear the corresponding “rise-recovery” phenomenon. At the same time, the fracturing process is divided into three stages according to the variation law of UFIQ in the HF process: liquid filling stage, energy storage and coal cracking cycle stage, and stop cracking stage. In addition, through the arrangement of holes stress gauges around the fracturing hole, it is found that the transfer of disturbance stress formed in the coal mass due to HF behavior is mainly attenuation, and its change stage in the whole HF process is mainly divided into the original stress stage, the stress response stage, and the stress stabilization stage. These results inform the design and optimization of fracturing parameters in hydraulic fracturing processes and aid in understanding the mechanisms of earthquake induction by HF.
Wydawca
Czasopismo
Rocznik
Tom
Strony
331--354
Opis fizyczny
Bibliogr. 32 poz., fot., rys., wykr.
Twórcy
autor
- Chongqing University, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing 400030, China
- Chongqing University, School of Resources and Safety Engineering, Chongqing 400044, China
autor
- Chongqing University, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing 400030, China
- Chongqing University, School of Resources and Safety Engineering, Chongqing 400044, China
- Politecnico di Torino, Department of Structural, Geotechnical and Building Engineering, Turin, Italy
autor
- Henan Polytechnic University, School of Surveying, Mapping and Land Information Engineering, Jiaozuo 454000, Henan, China
Bibliografia
- [1] K . Wang, F. Du, Coal-gas compound dynamic disasters in China: A review. Process Saf. Environ. 133, 1-17 (2020).DOI: https://doi.org/10.1016/j.psep.2019.10.006.
- [2] F.B. Zhou, T.Q. Xia, X.X. Wang, Y.F. Zhang, Y.N. Sun, J.S. Liu, Recent developments in coal mine methane extraction and utilization in China: A review. J. Nat. Gas. Sci. Eng. 31, 437-458 (2016).DOI: https://doi.org/10.1016/j.jngse.2016.03.027.
- [3] H . Yang, J.Z. Liu, D.M. Zhang, W.J. Xiao, X.L. Wang, K. Wang, Response Characteristics of Coal Measure Strata Subjected to Hydraulic Fracturing: Insights from a Field Test. Energ. Fuel. 35, 19410-19422 (2021).DOI: https://doi.org/10.1021/acs.energyfuels.1c02791.
- [4] X.G. Wang, Q.T. Hu, Q.G. Li, Investigation of the stress evolution under the effect of hydraulic fracturing in the application of coal bed methane recovery. Fuel 300, 120930 (2021).DOI: https://doi.org/10.1016/j.fuel.2021.120930.
- [5] X.F. Li, H.B. Li, L.W. Liu, Y.Q. Liu, M.H. Ju, J. Zhao, Investigating the crack initiation and propagation mechanismin brittle rocks using grain-based finite-discrete element method. Int. J. Rock Mech. Min. 127, 104219 (2020).DOI: https://doi.org/10.1016/j.ijrmms.2020.104219.
- [6] X.J. Hao, Y.N. Wei, K. Yang, J. Sun, Y.F. Sun, G.P. Zhu, S.H. Wang, H.B. Chen, Z.W. Sun, Anisotropy of crack initiation strength and damage strength of coal reservoirs. Petrol. Explor. Dev+. 48, 243-255 (2021).DOI: https://doi.org/10.1016/S1876-3804(21)60020-4.
- [7] X.G. Kong, E.Y. Wang, S.G. Li, H.F. Lin, Z.B. Zhang, Y.Q. Ju, Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments. Theor. Appl. Fract. Mec. 105, 102395 (2020).DOI: https://doi.org/10.1016/j.tafmec.2019.102395.
- [8] C.P. Xin, F. Du, K. Wang, C. Xu, S.G. Huang, J.T. Shen, Damage evolution analysis and gas–solid coupling model for coal containing gas. Geomech. Geophys. Geo. 7, 7 (2021). DOI: https://doi.org/10.1007/s40948-020-00205-6.
- [9] H .F. Wang, Y.P. Cheng, L. Yuan, Gas outburst disasters and the mining technology of key protective seam in coal seam group in the Huainan coalfield. Nat. Hazards 67, 763-782 (2013).DOI: https://doi.org/10.1007/s11069-013-0605.
- [10] L. Li, J.Q. Tan, D.A. Wood, Z.G. Zhao, Q. Lyu, B. Shu, H.C. Cheng, A review of the current status of induced seismicity monitoring for hydraulic fracturing in un conventional tight oil and gas reservoirs. Fuel 242, 195-210(2019). DOI: https://doi.org/10.1016/j.fuel.2019.01.026.
- [11] L.G. Wang, Y.P. Xu, Study of the law of gradual change of the influence of hydraulic punching under a rational coal output. Arab. J. Geosci. 12, No. 427 (2019). DOI: https://doi.org/10.1007/s12517-019-4577-8.
- [12] T. Liu, B.Q. Lin, Q.L. Zou, C.J. Zhu, Microscopic mechanism for enhanced coal bed methane recovery and outburst elimination by hydraulic slotting: A case study in Yangliu mine, China. Greenh. Gases. 6, 597-614 (2016).DOI: https://doi.org/10.1002/ghg.1591.
- [13] Y .P. Cheng, Z.H. Lu, X.D. Du, X.F. Zhang, M.R. Zeng, A Crack Propagation Control Study of Directional Hydraulic Fracturing Based on Hydraulic Slotting and a Nonuniform Pore Pressure Field. Geofluids 13 (2020).DOI: https://doi.org/10.1155/2020/8814352.
- [14] X. Bai, D.M. Zhang, S. Zeng, S.W. Zhang, D.K. Wang, F.L. Wang, An enhanced coalbed methane recovery technique based on CO2 phase transition jet coal-breaking behavior. Fuel 265, 116912 (2020).DOI: https://doi.org/10.1016/j.fuel.2019.116912.
- [15] X.H. Zhou, X.L. Li, G. Bai, D.C. Bi, W.T. Liu, An experimental investigation of the effect of acid stimulation on gas extraction from coal. AIP Adv. 10, No. 115309 (2021). DOI: https://doi.org/10.1063/5.0020650.
- [16] W.Y. Lu, B.X. Huang, X.L. Zhao, A review of recent research and development of the effect of hydraulic fracturing on gas adsorption and desorption in coal seams. Adsorpt. Sci. Technol. 37, 509-529 (2019).DOI: https://doi.org/10.1177/0263617419857400.
- [17] H . Li, M.J. Liu, H.W. Yang, H. Gao, T.Q. Xia, Influence range simulation of loose blasting borehole in the coal rockmass. Therm. Sci. 23, 4157-1464 (2019). DOI: https://doi.org/10.2298/tsci180607211L.
- [18] Q.T. Hu, L. Liu, Q.G. Li, Y.Q. Wu, X.G. Wang, Z.Z. Jiang, F.Z. Yan, Y.C. Xu, X.B. Wu, Experimental investigationon crack competitive extension during hydraulic fracturing in coal measures strata. Fuel 265, No. 117003 (2020).DOI: https://doi.org/10.1016/j.fuel.2019.117003.
- [19] L. Zhuang, S.G. Juang, M. Diaz, K.Y. Kin, H. Hofmann, K.B. Min, A.R. Zang, O. Stephansson, G. Zimmermann, J.S. Yoon, Laboratory True Triaxial Hydraulic Fracturing of Granite Under Six Fluid Injection Schemes and Grain-Scale Fracture Observations. Rock Mech. Rock Eng. 53, 4329-4344 (2020).DOI: https://doi.org/10.1007/s00603-020-02170-8.
- [20] W.G.P. Kumari, P.G. Ranjith, M.S.A. Perera, X. Li, L.H. Li, B.K. Chen, B.L. Avabthi Isaka, V.R.S. De Silva, Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks. Fuel 230, 138-154 (2018). DOI: https://doi.org/10.1016/j.fuel.2018.05.040.
- [21] T. Ito, K. Hayashi, Analysis of crack reopening behavior for hydrofrac stress measurement. Int. J. Rock Mech. Min. 30, 1235-1240 (1993). DOI: https://doi.org/10.1016/0148-9062(93)90101-I.
- [22] F.S. Zhang, Branko. Damjanac, Shawn. Maxwell, Investigating Hydraulic Fracturing Complexity in Naturally Fractured Rock Masses Using Fully Coupled Multiscale Numerical Modeling. Rock Mech. Roc.k Eng. 52, 5137-5160(2019). DOI: https://doi.org/10.1007/s00603-019-01851-3.
- [23] C. Lin, J. Mao, J. He, X. Li, J. Zhao, Propagation characteristics and aperture evolution of hydraulic fractures in heterogeneous granite cores. Arab. J. Geosci. 12, 684 (2019). DOI: https://doi.org/10.1007/s12517-019-4887-x.
- [24] B .B. Zhang, B. Li, D.W. Zhang, J.J. Li, Experimental research on permeability variation from the process of hydraulic fracturing of high-rank coal. Environ. Earth Sci. 79, 45 (2020).DOI: https://doi.org/10.1007/s12665-019-8764-4.
- [25] K . Shan, Y.J. Zhang, Y.H. Zheng, Y.X. Cheng, Y.X. Yang, Effect of fault distribution on hydraulic fracturing: Insights from the laboratory. Renew. Energ. 163, 1817-1830 (2021). DOI: https://doi.org/10.1016/j.renene.2020.10.083.
- [26] M.Z. Gao, J. Xie, J. Guo, Y.Q. Lu, Z.Q. He, C. Li, Fractal evolution and connectivity characteristics of mining induced crack networks in coal masses at different depths. Geomech. Geophys. Geo. 7, 9 (2021).DOI: https://doi.org/10.1007/s40948-020-00207-4.
- [27] T.H. Yang, J. Liu, W.C. Zhu, D. Elsworth, L.G. Tham, C.A. Tang, A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations. Int. J. Rock Mech. Min. 44, 87-97 (2007).DOI: https://doi.org/10.1016/j.ijrmms.2006.04.012.
- [28] Y .P. Cheng, Z.J. Pan, Reservoir properties of Chinese tectonic coal: A review. Fuel 260, 116350 (2020).DOI: https://doi.org/10.1016/j.fuel.2019.116350.
- [29] H . Gan, S.P. Nandi, P.L. Walker, Jr, Nature of the porosity in American coals. Fuel 51, 27277 (1972). https://doi.org/10.1016/0016-2361(72)90003-8.
- [30] G .Z. Zhao, B.S. Zhang, L.H. Zhang, C. Liu, S. Wang, Roof Fracture Characteristics and Strata Behavior Law of Super Large Mining Working Faces. Geofluids 2021, 8530009 (2021).DOI: https://doi.org/10.1155/2021/8530009.
- [31] T. Wang, W.R. Hu, D. Elsworth, W. Zhou, X.Y. Zhao, L.Z. Zhao, The effect of natural fractures on hydraulic fracturing propagation in coal seams. J. Petrol. Sci. Eng. 150, 180-190 (2017).DOI: https://doi.org/10.1016/j.petrol.2016.12.009.
- [32] D.G. Crosby, M.M. Rahman, M.K. Rahman, S.S. Rahman, Single and multiple transverse fracture initiation from horizontal wells. J. Petrol. Sci. Eng. 35, 191-204 (2002). DOI: https://doi.org/10.1016/S0920-4105(02)00243-7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c5e3e28-d882-4fcb-aeb4-276f3f0bec34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.