Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let [formula] be a nornied space. We deal here with a function s : X x X —> R given by the formula [formula] (for x = 0 we must define it separately). Then we take two unit vectors x and y such that y is orthogonal to x in the Birkhoff-James sense. Using these vectors we construct new functions Φx,y which are defined on R. If X is an inner product space, then Φx, y = sin and, therefore, one may call this function a generalization of the sine function. We show that the properties of this function are connected with geometrical properties of the normed space X.
Czasopismo
Rocznik
Tom
Strony
117--126
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Silesian University Institute of Mathematics Bankowa 14, 40-007 Katowice, Poland
Bibliografia
- [1] D. Amir, Characterizations of Inner Product Spaces, Birkhauser Verlag, Basel-Boston--Stuttgart, 1986.
- [2] M.M. Day, Linear Normed Spaces, Springer Verlag, New York, 1973.
- [3] J. Ratz, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
- [4] Gy. Szabó, A conditional Gauchy equation on normed spaces, Publ. Math. Debrecen 42/3-4 (1993), 265-271.
- [5] Gy. Szabó, Isosceles orthogonally additive mappings and inner product spaces, Publ. Math. Debrecen 46 (1995), 373-384.
- [6] T. Szostok, Modified version of Jensen equation and orthogonal additivity, Publ. Math. Debrecen, 58 (2001), 491-504.
- [7] T. Szostok, On some conditional functional equations, Ann. Math. Sil. 16 (2002), 65-77.
- [8] T. Szostok, On a generalization of the sine function, Glas. Mat. Ser. Ill 38(58) (2003), 29-44.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c5e2062-77bf-49c6-bb68-63b1d63dc4b8