Identyfikatory
Warianty tytułu
Activated Carbons from Solid Residue from Fast Pyrolysis of Biomass
Języki publikacji
Abstrakty
Zbadano węgle aktywne otrzymane ze stałej pozostałości po szybkiej pirolizie biomasy celulozy (C) i trocin (T) oraz ich mieszanek z polimerami syntetycznymi: celulozy/polistyrenu (3:1) (CPS), celulozy/polipropylenu (3:1)(CPP) oraz trocin/polistyrenu (3:1) (TPS) i trocin/polipropylenu (3:1) (TPP). Węgle aktywne otrzymano na drodze aktywacji parą wodną w temperaturze 850°C do 50% ubytku masy. Węgle scharakteryzowano, opierając się na analizie technicznej, elementarnej oraz sorpcji azotu w −196°C. Dodatkowo dla wybranych węgli aktywnych przeprowadzono adsorpcję fenolu, czerwieni Kongo i witaminy B12. Adsorpcję wykonano w warunkach statycznych w temperaturze pokojowej. Wyznaczono czasy osiągania stanu równowagi oraz pojemność sorpcyjną. Wszystkie otrzymane węgle aktywne wykazały zasadowy charakter chemiczny powierzchni. Węgle otrzymane z celulozy są to typowo mikroporowate węgle aktywne, podczas gdy węgle aktywne z trocin charakteryzowały się dobrze rozwiniętą strukturą mikro- i mezoporowatą.
The activated carbons (ACs) were produced from solid residue of cellulose and synthetic polymer co-pyrolysis and sawdust and polymer co-pyrolysis. The solid residues of a mixture of cellulose/polystyrene (3:1) (CPS), sawdust/polystyrene (3:1) (TPS), cellulose/polypropylene (3:1) (CPP), sawdust/polypropylene (3:1) (TPP), and only cellulose (C) only sawdust (T) have been produced in two steps pyrolysis. In the first step the sample is slowly heated up to 400°C with heating rate 3°C/minutes and next the second step is the fast pyrolysis with heating rate 100°C/second up to 900°C. The ACs have been obtained by steam activation at 850°C up to about 50% burn off. The elemental analysis of C, H, N and S was performed using a Vario III Elemental Analyzer. The oxygen content was calculated by difference. The porous texture was determined from nitrogen adsorption isotherms measured at −196°C with a NOVA 2200 (Quantachrome). For a chosen activated carbon the adsorptive properties toward phenol, Congo red, and vitamin B12 have been determined. The adsorption processes were carried out in static condition at ambient temperature. The equilibrium time and equilibrium sorption capacity were determined. All obtained ACs have basic surface characteristics. The cellulose based activated carbons are predominantly microporous whereas the sawdust based AC have well developed both micro and mesoporous structure. Activated carbon from cellulose has high adsorption capacity toward phenol whereas AC from sawdust is found to be very efficient adsorbent for the removal of Congo red and vitamin B12. Additionally, the adsorption of phenol and Congo red was enhanced by electrostatic forces that appeared between the adsorbed molecules and activated carbon surface.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
205--215
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Politechnika Wrocławska, Zakład Materiałów Polimerowych i Węglowych ul. Gdańska 7/8, 50-344 Wrocław
autor
- Politechnika Wrocławska, Zakład Materiałów Polimerowych i Węglowych ul. Gdańska 7/8, 50-344 Wrocław
Bibliografia
- [1] Dąbrowski A., Podkościelny P., Hubicki Z., Barczak M., Adsorption of phenolic compounds by activated carbon-a critical review, Chemosphere 2005, 58, 1049-1070.
- [2] Dąbek L., Ozimina E., Picheta-Oles A., Wykorzystywanie węgla aktywnego i nadtlenku wodoru w oczyszczaniu ścieków przemysłowych, Inżynieria i Ochrona Środowiska 2011, 14(2), 181- -189.
- [3] Ioannidou O., Zabaniotou A., Agricultural residues as precursors for activated carbon production-a review, Renewable and Sustainable Energy Reviews 2007, 11, 1966-2005.
- [4] Cao N., Darmstadt H., Roy C., Activated carbon produced from charcoal obtained by vacuum pyrolysis of softwood bark residues, Energy & Fuels 2001, 15, 1263-1269.
- [5] Bridgewater A.V., Biomass fast pyrolysis, Thermal Science 2004, 8, 21-49.
- [6] Rutkowski P., Chemical composition of bio-oil produced by co-pyrolysis of biopolymer/ polypropylene mixtures with K2CO3 and ZnCl2 addition, Journal of Analytical and Applied Pyrolysis 2012, 95, 38-47.
- [7] Rutkowski P., Influence of zinc chloride addition on the chemical structure of bio-oil obtained during co-pyrolysis of wood/synthetic polymer blends, Waste Management (Elmsford) 2009, 29, 2983-2993.
- [8] Moreno-Castilla C., Lopez-Ramon M.V., Carrasco-Marin F., Changes in surface chemistry of activated carbons by wet oxidation, Carbon 2000, 38, 1995-2001.
- [9] Laszlo K., Szűsc A., Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2,3,4-trichlorophenol solution, Carbon 2001, 39, 1945-1953.
- [10] Lorenc-Grabowska E., Gryglewicz G., Machnikowski J., p-chlorophenol adsorption on activated carbons with basic surface properties, Applied Surface Science 2010, 256, 4480-4487.
- [11] Lorenc-Grabowska E., Gryglewicz G., Diez M.A., Kinetics and equilibrium studies of phenol adsorption on nitrogen-enriched activated carbons, Fuel 2013, 114, 235-243.
- [12] Pelekani C., Snoeyink V.L., A kinetic and equilibrium study of competitive adsorption between antrazine and Congo red dye on activated carbon: the importance of pore size distribution, Carbon 2001, 39, 25-37.
- [13] Tamai H., Kakii T., Hirota Y., Kumamoto T., Yasuda H., Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules, Chemical Material 1996, 8, 454-462.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c5ce15b-0248-403b-bfea-ea05cfdf79e6