PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of acoustic emission response and fracture morphology of rock hydraulic fracturing under true triaxial stress

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydraulic fracturing technique has been used to exploit hydrocarbons resources in the past years. To investigate the mechanism of hydrofracturing process, a true triaxial hydraulic fracturing device combined with acoustic emission (AE) system is employed to study the crack initiation and propagation under different injection rates. Furthermore, a 3D scanner is employed to obtain the morphology of the fractured surface when the fracturing test completes. The results show that in hydraulic fracturing, the cracks propagating mostly perpendicular to the direction of the minimum horizontal principal stress. A lower injection rate corresponds to the peak value of the AE count occurring at a later time and a large value of the cumulative AE count, indicating greater damage and a complicated crack propagation path. With the injection rate increased, the earlier the microcracks occur, the shorter the fracturing time of the specimen is, and the fatter the fracture morphology.
Czasopismo
Rocznik
Strony
1017--1024
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People’s Republic of China
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People’s Republic of China
autor
  • College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, People’s Republic of China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People’s Republic of China
Bibliografia
  • 1. Bohloli B, Pater CJD (2006) Experimental study on hydraulic fracturing of soft rocks: influence of fluid rheology and confining stress. J Petrol Sci Eng 53:1–12
  • 2. Chitrala Y, Sondergeld CH, Rai CS (2012) Microseismic studies of hydraulic fracture evolution at diferent pumping rates. Soc Petrol Eng
  • 3. Deng JQ, Lin C, Yang Q, Liu YR, Tao ZF, Duan HF (2016) Investigation of directional hydraulic fracturing based on true tir-axial experiment and finite element modeling. Comput Geotech 75:28–47
  • 4. Duan K, Kwok CY, Wu W, DEM Jing L (2018a) modeling of hydraulic fracturing in permeable rock: influence of viscosity, injection rate and in situ states. Acta Geotech 90:1–16
  • 5. Duan K et al (2018b) DEM modeling of hydraulic fracturing in permeable rock: influence of viscosity, injection rate and in situ states. Acta Geotech 13(5):1187–1202
  • 6. Fallahzadeh SH, Rasouli V, Sarmadivaleh M (2015) An investigation of hydraulic fracturing initiation and near-wellbore propagation from perforated boreholes in tight formations. Rock Mech Rock Eng 48:573–584
  • 7. Fallahzadeh S, Hossain M, Cornwell AJ, Rasouli V (2017) Near wellbore hydraulic fracture propagation from perforations in tight rocks: the roles of fracturing fluid viscosity and injection rate. Energies 10:359
  • 8. Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Seismol Soc Am Bull 32:163–190
  • 9. House L, Phillips WS, Fehler M, Rutledge J (1997) Can hydraulic fracture-induced microearthquakes show where the fluid went? Int J Rock Mech Min 34:131–133
  • 10. Jarvie DM (2012) Shale resource systems for oil and gas: part 1-shale-gas resource systems. AAPG Memoir 97:89–110
  • 11. Li YH, Liu JP, Zhao XD, Yang YJ (2009) Study on b-value and fractal dimension of acoustic emission during rock failure process. Rock Soil Mech 30:2539–2559
  • 12. Li YH, Liu JP, Zhao XD, Yang YJ (2010) Experimental studies of the change of spatial correlation length of acoustic emission events during rock fracture process. Int J Rock Mech Min 47:1254–1262
  • 13. Lin C, He J, Li X, Wan X, Zheng B (2017) An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation. Rock Mech Rock Eng 50:543–554
  • 14. Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech 30:883–899
  • 15. Moriya H, Fujita T, Niitsuma H, Eisenblatter J, Manthei G (2006) Analysis of fracture propagation behavior using hydraulically induced acoustic emission in the Bernburg salt mine. Int J Rock Mech Min 43:49–57
  • 16. Nelson EJ, Chipperfield ST, Hillis RR, Gilbert J, McGowen J, Mildren SD (2007) The relationship between closure pressures from fluid injection tests and the minimum principal stress in strong rocks. Int J Rock Mech Min 44:787–801
  • 17. Preisig G, Eberhardt E, Gischig V, Roche V, Baan M, Valley B (2015) Development of connected permeability in massive crystalline rocks through hydraulic fracture propagation and shearing accompanying fluid injection. Geofluids 15:321–337
  • 18. Rahman MK, Hossain MM, Rahman SS (2000) An analytical method for mixed-mode propagation of pressurized fractures in remotely compressed rocks. Int J Fracture 103:243–258
  • 19. Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min 48:712–727
  • 20. Stanchits S, Burghardt J, Surdi A (2015) Hydraulic fracturing of heterogeneous rock monitored by acoustic emission. Rock Mech Rock Eng 48:2513–2527
  • 21. Wang HY (2016) Numerical investigation of fracture spacing and sequencing effects on multiple hydraulic fracture interference and coalescence in brittle and ductile reservoir rocks. Eng Fract Mech 157:107–124
  • 22. Wang G, Guo Y, Du C, Sun L, Liu Z (2019) Experimental study on damage and gas migration characteristics of gas-bearing coal with different pore structure under sorption-sudden unloading of methane. Geofluids. https://doi.org/10.1155/2019/7287438
  • 23. Wanniarachchi W, Gamage R, Perera M, Rathnaweera T, Gao M, Padmanabhan E (2017) Investigation of depth and injection pressure effects on breakdown pressure and fracture permeability of shale reservoirs: an experimental study. APPL SCI 7:664
  • 24. Wu W, Zoback MD, Kohli AH (2017) The impacts of effective stress and CO2 sorption on the matrix permeability of shale reservoir rocks. Fuel 203:179–186
  • 25. Xu J, Liu Y, Peng S (2016) Acoustic emission parameters of three gorges sandstone during shear failure. Acta Geophys 64:2410–2429
  • 26. Yan C, Zheng H (2016) A two-dimensional coupled hydro-mechanical finite-discrete model considering porous media flow for simulating hydraulic fracturing. Int J Rock Mech Min 88:115–128
  • 27. Zeng DQ (2003) Types and characteristics of fractures in tight sandstone gas reservoirs with low permeability. Acta Petrolei Sinica 24:36–39
  • 28. Zoback MD, Rummel F, Jung R, Raleigh CB (1977) Laboratory hydraulic fracturing experiments in intact and pre-fractured rock. Int J Rock Mech Min 14:49–58
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c5b5102-d728-416c-acc4-dd7b5ca6d793
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.