Rafał CHATYS*, Krzysztof PIERNIK

Politechnika Świętokrzyska w Kielcach, Wydział Mechatroniki i Budowy Maszyn * e-mail: chatys@tu.kielce.pl

Modelowanie właściwości mechanicznych wyrobów lotniczych wytworzonych z kompozytów wzmocnionych włóknami

Streszczenie. W pracy omówiono i podjęto próbę szacowania właściwości mechanicznych próbek wyciętych z włóknistego materiału kompozytowego o osnowie poliestrowej (Firestop 8175-w-1). W modelu założono, że kompozyt składa się z komponentów, mających indywidualne fizykomechaniczne właściwości. Weryfikację poprawnego doboru kształtu próbki przeprowadzono metodą analizy elementów skończonych ABAQUS, wprowadzając do programu średnie wartości z próbek ciętych pod różnymi kątami względem wzmocnienia (mato tkanina szklana typu E).

MODELING THE MECHANICAL PROPERTIES OF AIR PRODUCTS MANUFACTU-RED FROM FIBER-REINFORCED COMPOSITES

Summary. At the work they discussed and an attempt was made to estimate the mechanical properties of samples cut from a fibrous composite material with a polyester matrix (Firestop 8175-w-1). The model assumes that the composite comprises component having individual physico-mechanical properties. Verifications proper selection of the shape of the sample was performed by ABAQUS finite element analysis, a program that introduces the mean values of the samples cut at different angles to gain (the mato glass fabric of type E).

1. WPROWADZENIE

Intensywny rozwój formowania włóknistych materiałów kompozytowych (WMK) stanowiący podstawę projektowania złożonych elementów konstrukcyjnych, wpływa na ich specyficzne właściwości poprzez rodzaj zastosowanych komponentów (osnowy, matrycy [1]), a także poprzez odpowiedni dobór metod, procesów i parametrów technologicznych [2]. Przy formowaniu czy wytwarzaniu nowych wieloskładnikowych materiałów [3] o strukturze warstwowej, ważna jest ich funkcjonalność i alternatywa dla tradycyjnych rozwiązań. Wyroby z WMK wytworzone tradycyjnymi metodami (jak laminowanie ręczne lub natrysk żywicy z włóknem ciętym, czy długim) posiadają defekty i wady struktury (w postaci pęcherzy powietrza, pustek wewnętrznych materiału między warstwami kompozytu). Najczęściej występują one na krawędziach gotowych elementów w wyniku nie dotrzymania czasów utwardzania, zbyt szybkiego wylaminowania i zbyt małej porcji żywicy przewidzianej pomiędzy kolejne warstwy wzmocnień (czy rodzaj obróbek cięcia [2]). Wszystkie wady i zjawiska (powstałe w procesie technologicznym) pogarszają właściwości mechaniczne materiału, a także walory estetyczne wyrobu. Jakość jest czuła na te zjawiska i niedoskonałości struktury WMK wytworzonego w procesie formowania materiału [4]. Rozwarstwienia na brzegach próbek [5], czy efekt skali [6] są bardziej widoczne przy zniszczeniu WMK w badaniach dynamicznych. Zrozumienie tego zjawiska w materiałach warstwowych prowadzi do analizowania rozkładów naprężeń, przy uwzględnieniu roli struktury (dla dowolnego ułożenia warstw w WMK [7]). Jednym z czynników niwelowania tych defektów i zjawisk odbywa się poprzez zastępowanie tradycyjnych metod wytwarzania WMK metodami "wytwarzania infuzyjnego pod próżnią" [8] (metodami: infuzji [9, 10], RTM [11]), czy worka próżniowego), który polega na wtłaczaniu żywicy pod ciśnieniem do wnętrza formy.

Celem pracy będzie przeprowadzenie weryfikacji przyjętego kształtu próbki w szacowaniu wytrzymałości WMK formowanego metodą worka próżniowego za pomocą analizy elementów skończonych ABAQUS.

2. MATERIAŁ I METODYKA BADAŃ

W celu realizacji pracy obiektem badań był WMK formowany metodą wtłaczania żywicy (poprzez wessanie) do wnętrza formy (tj. worka próżniowego: Vacuum bagging). W skład

Rys. 1. Geometryczne wymiary eksperymentalnych próbek

– 'P(1, 2, 3) – xx': gdzie, 'P' oznacza kompozyt poliestrowy o ułożeniu $[0/90]_S$ z bazą pomiarową L_{BP} = 150 mm cięty pod kątami: 1 – 0°; 2 – 45°; 3 – 90° względem wzmocnienia z numerem próbki 'xx').

Tabela 1. Parametry laminatu formowanego metodą wtłaczania żywicy do wnętrza formy

Technologia	Utwardzacz, %	Czas odformowania, h	Czas żelowania, h	Dodatkowe wygrzewanie, h
Kompozyt	Butanox M50, 4 +	24	1	16
[0/90] _S	inicjator NCL-10, 2		(przy T = 22-23°C)	(przy T =30 ⁰ C)

kompozytu wchodziło wzmocnienie w postaci mato tkaniny szklanej o gramaturze 600 g/m² z osnową poliestrową (Firestop@ 8170-W1). Parametry technologiczne formowanego w Zakładzie Kompozytów firmy BELLA laminatu przedstawiono w tabeli 1.

2.1. Przygotowanie próbek

Pomiary geometrii i masy wyciętych próbek zostały wykonane na maszynie ze wspomaganiem numerycznym CNC zgodnie z normą PN-EN ISO 527-5:1997. Aby w mocowaniu maszyny zniwelować wpływ koncentracji naprężeń (Rys.1) na właściwości mechaniczne kompozytu poliestrowego uchronić przed powierzchniowym zniszczeniem, na próbki naklejono nakładki (zwiększając tym samym powierzchnię równomiernego rozkładu koncentracji naprężeń w badanej próbce).

Zastosowano następujące oznaczenia próbek poddanych statycznej próbie rozciągania:

2.2. Metodyka. Badania statyczne

Statyczną próbę rozciągania próbek kompozytów przeprowadzono na maszynie wytrzymałościowej INSTRON 8501 w Katedrze Wytrzymałości Centrum Laserowych Technologii Metali PŚk w Kielcach wyposażonej w aparat pomiarowy Flex Test SE i sterownik firmy MTS. Obciążenia były mierzone przy użyciu rozet HBM 1-XY91-6/350 (Rys.2) składających się z dwóch prostopadłych czujników tensometrycznych i pojedynczych mierników HBM 1-XY91-6/350 o jednakowych długościach pomiarowych 6 mm i nominalnym oporze elektrycznym 350 Ω.

Rozety i pojedyncze ekstensometry umieszczono po przeciwnych stronach próbki. Pomiary ekstensometru, obciążenie i przemieszczenie, rejestrowano z użyciem HBM Spider 8 ze sterownikiem "Catman". Próby wykonano z prędkością przemieszczania głowicy 2 mm/min. Naprężenie osiowe określono jako

Rys. 2. Przygotowanie próbek kompozytowych do statycznej próby rozciągania

stosunek siły do zmierzonego, średniego pola przekroju poprzecznego próbek testowych.

2.3. Analiza i weryfikacja otrzymanych wyników WMK z uwzględnieniem przyjętej geometrii próbki

Wyniki badań otrzymane ze statycznej próby rozciągania WMK posiadają dość znaczny rozrzut właściwości mechanicznych. Ustalono rozrzuty (Tab. 2) i średnie wartości wytrzymałości otrzymane ze statycznej próby rozciągania z 5 próbek ciętych pod różnymi kątami (np. pod kątem 45°: Tab. 3). Defekty spowodowały lokalne koncentracje naprężeń i pękanie komponentów (pobliskich włókien), aż do zniszczenia laminatu. Najwyższą średnią wytrzymałość stwierdzono na poziomie 174,6 MPa dla kompozytu ciętego pod kątem 90° względem wzmocnienia.

Obciążenia WMK ciętego pod kątem 45° względem wzmocnienia						
Oznaczenie próbki	F _{max} , kN	S _{max} , MPa	E, GPa			
P2-21	4,25	67,41	8,73			
P2-22	4,61	75,14	8,96			
P2-23	4,23	76,36	9,65			
P2-24	4,34	71,25	8,76			
P2-25	4,35	78,17	10,21			
Średnia	4,35	73,67	9,26			

Tabela 3. Zestawienie danych próbek obciążonych pod kątem 45°

Naprężenia międzywarstwowe powstałe w WMK możemy wyznaczyć wykorzystując metodę elementów skończonych, którą można zweryfikować jedynie w przypadku porównania wartości teoretycznej z eksperymentalną. Na proces destrukcji największy wpływ mają normalne oraz styczne naprężenia (t) międzywarstwowe (S), które wizualnie powodują "puchnięcie" swobodnego brzegu [12]. W ostatnich latach zrozumienie efektu brzegowego skupia się raczej na zobrazowaniu tego zjawiska niż na stworzeniu metod pozwalających uwzględnić jego wpływ na wytrzymałość złożonych materiałów, czy elementów konstrukcji.

Koncepcja MES-owska zakłada, że każda wielkość (np. przemieszczenie, naprężenie) opisana za pomocą funkcji ciągłej (pierwotnej) w danym obszarzee (fragmencie ciągłym modelu fizycznego) aproksymuje się modelem

Średnia wytrzymałość kompozytu szklanego o osnowie poliestrowej						
Rozrzut właściwości/kąt	0°	45°	90°			
S _{max} , MPa	117,90 – 156,40	67,41 - 78,17	160,00 - 196,70			
E, GPa	10,13 – 12,23	8,73 – 10,21	12,96 – 15,81			
Średnia S _{max'} MPa	122,98 (131,35)*	73,67	174,60			

Tabela 2. Zestawienie danych próbek obciążonych pod różnymi kątami

* średnia z 4 próbek

Rys. 3. Przykład modelowania włóknistych materiałów kompozytowych

dyskretnym. Model dyskretny złożony jest ze zbioru funkcji ciagłych określonych w skończonej liczbie podobszarów zwanych elementami skończonymi na jakie podzielono rozpatrywany obszar [13].

Pakiet ABAQUS (konkurencyjny do panietu LMS Santech) o budowie modułowej pozwala na dosyć swobodną konfigurację przy tworzeniu i analizowaniu modelów obliczeniowych dla elementów wykonanych z WMK (np. pakiet "CAE" definiuje geometrię, właściwości materiału – tworząc pliki wejściowe dla modułu obliczeniowego "Standard" lub "Explicit" – w celu wizualizacji układu [14]). W pracy dzięki modułowi "Property" zostały wykonane wstępne modele próbek (Rys.1) oraz (w zakładce ABAQUSA "Edit Section") określono liczbę warstw, grubość i kąt ułożenia (Rys.3).

W celu weryfikacji poprawnego doboru kształtu próbki przy oszacowaniu wytrzymałości WMK (poprzez analizę elementów skończonych ABAQUS), wprowadzono do programu średnie wartości z próbek ciętych pod różnymi kątami (0°, 90° i 45°). Naprężenie określono z pomocą najczęściej używanej hipotezy energetycznej von Misessa [15], która za miarę wytężenia przyjmuje energię właściwą odkształcenia postaciowego. Redukowane naprężenie (hipotezy von Misessa) dla płaskiego stanu naprężeń $\sigma_{x'}$ $\sigma_{y'}$ $\tau_{xy'}$ jest (1):

$$\sigma_{red} = \sqrt{\left[\left(\sigma_x - \sigma_y\right)\right]^2 + 3\tau^2} \tag{1}$$

a przy założeniu $\sigma_x = \sigma$, $\sigma_y = 0$ i $\tau_{xy} = \tau$, powyższa zależność (1) przyjmuje postać (2):

$$\sigma_{red} = \sqrt{\sigma^2 + 3\tau^2} \tag{2}$$

Obliczenia naprężeń (rys. 4a) ujawniły pojawianie się symetrycznych naprężeń w górnej i dolnej części próbek (rys. 1) ciętych pod różnymi kątami. Obszary mocowania próbek prostokątnych z nakładkami w uchwytach maszyny, posiadały niższe wartości koncentracji naprężeń niż próbki w kształcie wiosełek (rys. 5). Wybór kształtu próbek prostokątnych z nakładkami, ciętych pod różnymi kątami (rys. 4 – na przykładzie próbki ciętej pod kątem 0°), wydaje się uzasadniony, chociaż są duże problemy technologiczne i czasowe przy klejeniu nakładek.

Materiał na nakładki powinien mieć mniejszą sztywność od materiału badanego. Rodzaje "próbek" stosowanych w badaniach mogą być bardzo różnorodne. Autorzy tej pracy skłaniają się do stosowania "próbek" przygotowanych starannie w warunkach kontrolowanych, a nie w zwykłych warunkach produkcji przemysłowej. W ten sposób można kontrolować występujące procesy (pęknięcia w przewidzianej części badanej próbki pod obciążeniem porównywalnym z obciążeniem w warunkach

Rys. 4. Wyniki analizy naprężeń – model próbek prostokątnych ciętych pod kątem 0° (wg normy ISO 527-5:1997), zgodnie z hipotezą wytężeniową von Misessa (a) i próbki rzeczywiste (b)

eksploatacji) i zjawiska (efekt skali), co ułatwia interpretację otrzymanych wyników z danej próbki. W przypadku formowania włóknistego materiału kompozytowego przeznaczonego na próbki, należy zapewnić odpowiednią zawartość włókien oraz przestrzegać technologii wytwarzania, która powinna być taka sama jaką stosowano w produkcji materiału. Defekty w strukturze znacząco wpływają na jakość przygotowanych próbek, a tym samym na otrzymane wyniki.

W tabeli 4 średnia wytrzymałość WMK (123 MPa) otrzymana z 5 próbek ciętych pod

Tabela 4. Zestawienie właściwości mechanicznych próbek ciętych pod kątem 0°

Obciążenia WMK ciętego pod kątem 0° względem wzmocnienia						
Oznaczenie próbki	F _{max} , kN	σ _{max} , MPa	E, GPa			
metodą ręczną						
P1-11	8,25	154,60	12,20			
P1-12	7,80	123,50	11,20			
P1-13	5,20	89,30	10,10			
P1-14	8,10	129,40	11,80			
P1-15	7,20	117,90	11,40			
Średnia	7.31	122.98	11,34			

Rys. 5. Modelowanie koncentracji naprężeń próbek w kształcie wiosełek ciętych pod kątem 0° (wg normy PN-EN ISO 527-4:1997) zgodnie z hipotezą wytężeniową von Misessa

kątem 0° utrudnia interpretację otrzymanych wyników z danej partii próbek. Jedna z próbek (P1-13: tabela 4) została odrzucona w wyniku niespełnia przyjętych wymagań. Co spowodowało zwiększenie średniej wytrzymałości (dla danej parti próbek ciętych pod kątem 0°) o 5% (do poziomu 131,35 MPa: Tab. 1).

3. WNIOSKI

W wyniku analizy stwierdzono, że:

- starannie przygotowane "próbki" ułatwiają interpretację otrzymanych wyników;
- jakość przygotowanych próbek pozwala kontrolować występujące procesy (pęknięcia w przewidzianej części badanej próbki) i zjawiska (efekt skali, rozwarstwienia);
- obszary mocowania próbek prostokątnych z nakładkami w uchwytach maszyny, dla formowanego WMK metodą worka próżniowego posiadały niższe wartości koncentracji naprężeń niż próbki w kształcie wiosełek;
- zasadnicza różnica pomiędzy wartościami mechanicznymi otrzymanymi z weryfikacji wpływu kształtu próbek ciętych pod różnymi kątami względem wzmocnienia metodą elementów skończonych (ABAQUS), a wartościami otrzymanymi z eksperymentu spowodowana jest prawdopodobnie tym, że program ABAQUS nie uwzględnia błędów technologicznych (zbyt mała ilość żywicy, śladowe pozostałości powietrza) i zjawisk na brzegu próbki.

Bibliografia:

- Gnatowski A.: Wpływ rodzaju napełniacza na właściwości wybranych mieszanin polimerowych, Kwartalnik Kompozyty nr 2, (2005) 63-68.
- [2] Chatys R.: Mechanical Properties of Polymer Composites Produced by Resin Injection Molding for Applications Under Increased Demands for Quality and Repeatability, Journal of "Ultrasound", 64:2 (2009) 35-38.

- [3] Guigon M., Jinkin M. K.: The interface and interphase in carbon fibrecrein-forced composites. Journal "Composite", Vol.25, (1994).
- [4] Chatys R.: Modeling of Mechanical Properties with the Increasing Demands in The Range of Qualities and Repeatability of Polymers Composites Elements, Monograph "Polymers and Constructional Composites", Gliwice (2008) 36-47.
- [5] Spilker R.L., Chau S.C.: Edge effects in symmetric composite laminates: importance of satisfying the traction-free-degree condition, J. of Composite Mate., 14:1 (1980) 2-20
- [6] Curtin W.A.: Dimensionality and Size Effects on the Strength of Fiber-Reinforced Composites, Composites Science and Technology, vol. 60 (2000) 543-551.
- [7] Полеов В.А., Перов Ю.Ю.: Экспериментальные методы оценки кромочного эффекта, Механика композит. материалов. N.2 (1989) 318-331.
- [8] Królikowski W.: Polimerowe kompozyty konstrukcyjne, PWN, Warszawa (2012).
- [9] Chatys R.: Analiza statystyczna parametrów wytrzymałościowych w procesie zniszczenia kompozytów włóknistych z wykorzystaniem procesu Markowa, Kielce (2013).
- [10] Harpera A. R.: Zalety procesu formowania kompozytów z ciekłej żywicy w zamkniętych formach, JEC Composites, VIII-IX (2003).
- [11] Chatys R.: Modeling of Strength Parameters of a Fiber Composite Using the Markov Chains Theory, Przetwórstwo tworzyw, 147:3, (2012) 169-173.
- [12] Кроссман Ф.В.: Анализ разрушени слоистых композитов у свободного кра, Разрушение композитных материалов, Механика комп. матери. N.2 (1979) 280-290.
- [13] Rusiński E., Czmochowski J., Smolnicki T.: Zaawansowana metoda elementów skończonych w konstrukcjach nośnych. Oficyna Wyd. PW, Wroclaw (2000).
- [14] Ochelski S.: Metody doświadczalne mechaniki kompozytów konstrukcyjnych, WNT Warszawa (2004).
- [15] Żuchowski R.: Wytrzymałość Materiałów, Oficyna Wyd. PW, Wrocław (1996).