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Main material 

It is known (Holdenblat, I.I.,1969; Popovych, P. V., & Slobodyan, Z. B., 2014) that the exact solution of 
elasticity considered only solid round plates, loaded evenly distributed pressure constant intensity. The law can 
be an arbitrary load type and resistance plate type. 

Differential equations of equilibrium in cylindrical coordinates are following (Holdenblat, I.I.,1969): 
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In equations (1) and (2) the index after comma places means of partial corresponding coordinate r or z; u1 

and u3 components respectively radial and axial movement; u – Laplace operator of movement  1,3 ;u ii   

 1,3 ;u ii  11 , 12 , 13  – under radial components, county, axial and shear stresses. 

 
Fig. 1. Scheme plate under uniformly distributed load 

 
Components of stress are determined by Hook`s law (Germain, P., 1983). 
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under certain dependencies between deformations and displacements: 
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r
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Here 

ij
  – Kronecker’s symbol; and   and v  – сoefficients of linear thermal expansion and Poisson; 

11 22 33e e e e   – Thermal expansion; 
 2 1

E
G

v



– Shear modulus; Е  – Modulus of elasticity. 

For circuit system equilibrium equations (1) should be added heat equation (Germain, P., 1983): 
 

1
0W


         (5) 

 

By W  marked quantity of heat produced or absorbed per unit volume of the body with its deformation; 

  – Thermal conductivity; 11 11 33

1
, , ,

r
       . 

Solving the problem of bending circular plates under arbitrary axisymmetric load intensity  
х

P r  requires 

the setting of normal axial tension 33  . 

http://link.springer.com/search?facet-author=%22P.+V.+Popovych%22
http://link.springer.com/search?facet-author=%22Z.+B.+Slobodyan%22


ISSN 2520-2979 © Journal of Sustainable Development of Transport and Logistics, 1(1), 2016 
 

‹ 42 › 

For its definition use the method based on translational approximations solution proposed by one of the 

authors. After mathematical transformations we get value of 33 :  
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z zh h
P r

h
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That will satisfy the following conditions: 
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2

h
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2

2
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Where h  – Thickness circular plate. 

Knowing the tension (6) turn to the solving of thick plates bending problem, using function   ,r z
 . For 

more accurate solution to this problem should be considered polytropic, h.e. not isothermal and not adiabatic, 

thermodynamic process. Function  ,r z
  linked to thermostatic potential displacement formula (Germain, P., 

1983): 
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In this case, we present the movement as such: 
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thermal expansion е  we find in expression (4) given (9): 
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Substituting movement (9) and volume expansion (10) in equation (1) we get: 
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Integrating the first equation in r  and the second on z , we obtain the formula for determining the 

temperature variable: 
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Suppler find out Hooke's law (Landau, L.D. & Livshits, E.M., 1987), where the temperature change   can 

be determined using equation (12). 
Then we have: 
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To solve the equations of elasticity should select a function of displacement  ,r z  in a way that allows 

you to satisfy specific boundary conditions of the problem. 
Next, consider bending round plates in the exact formulation of the problem of elasticity, which is 

attached under normal force  P r  any law load symmetrically about the axis of rotation z , when any type of 

resistance. 

Using strain of 33  from (6) that satisfies the conditions (7) and compared with the voltage 33  from the 

equation (13), we obtain the differential equation for determining the function  ,r z . 
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Integrating this equation by r  between 1а  to r , We get: 
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Where  1f z  – Arbitrary function integration; 1a  – The radius of the central aperture plate. 

If the solid plate ( 1 0a  ), Then  1f z  it  should be considered to be zero for finite displacements  u r . 

Repeating the process of integrating with r  between 1а  to r , We get: 
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Where  2f z  – arbitrary function integration. 

For ease of calculation, consider a solid cylindrical plate [ 1 0а  ;  1 0f z  ]. Then: 
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Differentiating function (17) to r  and z , We get: 
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Putting 
,13  in tension 13  the equations (13) gives: 
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Boundary conditions for shear stresses (19) carried integrally on the edge of a circular plate, it means that 

at the 13  performance boundary conditions on average requires voltage  was set on the edge of the plate to the 

support reactions: 
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Thus, the tangential stress (19) exactly satisfy the boundary conditions on planes 
2

h
z    and integrally 

on the edge of the cylindrical surface. 

Substituting the function (17) in the formula (13) for normal radial stress 11  and finding function  2f z  

with boundary conditions 11 0   at r a , We get: 
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For the district voltage 22  from the equations (13) we get: 
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The resulting voltage satisfying balance equation (2) and boundary conditions:  33 P r   , at 
2

h
z   ; 

33 0  at 
2

h
z  ; 13 0   at 

2

h
z   ; and integrated on the appliance: 11 0   at r a . 

This is the first time when we get this kind of solving of the bending thick plate problem. Terms of 
impedance (resistance) plates allow you to determine the exact value movements on formulas (8), using (17). 

Moving 1u  and 2u  accepted as such: 
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where іА  – Arbitrary constants of integration. 

By movements (23) we find Voltage: 
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Expressions (23) and (24) is the exact solution of equilibrium equations (1) and (2) because the last turn 

after substituting for identity. Function  ,r z  must satisfy the equation (12), by which is possible to determine 

the temperature variable  ,r z , which is forming because of the actions of external pressures and dependence 

on boundary conditions. 
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To illustrate the elastic and thermodynamic reversibility above mentioned problems of elasticity theory 

for axisymmetric deformation of plates, we simplify decision,   0P r P const   suggesting that see Fig. 1 

Then we have the function of displacement (17): 
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For the tangent of tension (19), choose: 
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h
P z r

h
  

 
 
 

      (26) 

 
 
 

The size of the support reactions on the edge of the plate is: 
 

0
2

a
A P        (27) 

 
Radial (21) and county (22) voltage match: 
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For functions  2f z  ends 

 

 
5 3 2 2 3 3

2 0 1 23

1 6

120 48 48 12

V z z h z h z a
f z P C z C

E h


     

 
 
 

   (29) 

 

where 1C  and 2C  – Arbitrary constants of integration. 

Find displacement (9): 
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Radial displacement (28) does such resistance plate, allowing the movement of plates in the direction of 

the axis. 
Normal movement (30) allows for different anchor point to secure the appliance on their vertical 

displacement. 
Consider as an example hinge fixing points circuit boards in the median plane, that is: 
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Satisfying these boundary conditions for moving (31), we obtain for any sustainable integration 1C : 
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After substituting this value in (30), we get: 
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Voltage corresponding displacement (30) and (33) are as follows: 
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The function of displacement (25), after substituting (29) is: 
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Where 2C  – Arbitrary constants of integration. 

Finding the temperature variable  ,r z  in cylindrical circular plate, which arises from the action of 

external load 0P . 

 

,11 ,1 ,33

1

r
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Substituting the function (35) to (36), we find: 
 

 
 

 
3 2 3

2 2

03

1 6
,

6 8 24 2

V z zh h z
r z P a r

E h





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We know that the external load, surface and volume, leading to deformation of the body while causing the 

appearance of temperature changes in it (Landau, L.D. & Livshits, E.M., 1987). The change in temperature makes 

0T T    where T – Absolute temperature points of the body, 
0

T  – Temperature fatigue-free body at the time 

0t  . 

Thus, when changing deformation point temperature of the body is a result of absorption or heat 
insulated elastic body, with its interaction of the environment (Melanie, E., & Parkus, G., 1958). This temperature 

change curved round to the load plate 0Р  defines dependence (37). 

If you remove the load 0 0Р   voltage (34) and temperature change (37) disappear and the plate returned 

to its not intense and deformed original condition. The process is very slow deformation, which means it will be 
thermodynamically reversible (Timoshenko, S.P., & Huder, J., 1979). 

Exploring plate deformation and temperature change it from outside the load. Substituting axial 

displacement (33) 
2

h
z    we get the upper layers of compression plates in key areas: 
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For the bottom surface of the plate at 
2

h
z    we get: 
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3 1 0

1 3
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h V h
u r P

E


  

 
 
 

,     (39) 

 
that will have stretched zone. 
It is a known fact from the theory of physical structures bend. Then examine temperature change of 

formula (33) for a compressed zone. Find: 
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2 2
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    


     
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   
   

  
   
   

    (40) 

 
 
 

To get stretched zone: 
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


   


  



 
 
 

 
 
 

    (41) 

 
As you can see, the temperature of the compressed zone will be slightly higher then the temperature of 

stretched zone. In other words, compressed zone generates heat  0T T  and stretched it absorbs zone 

 0T T , That is a plate heat exchange with the environment. A similar theory was developed by Karl Zener 

(Feng, J., 1986) for thin plate bending vibrations at her and was brilliant experimental confirmation. 
Substituting variable temperature (37), which appears by bending a round plate of uniformly distributed 

load intensity constant in the equation (5) is the heat capacity flow in areas of the plate. 
 

 
03

1 18V z
W P

E h
  




          (42) 

 

For compressed zone at the plate 
2

h
z   : 

 
02

1 9
0

V
W P

E h





       (43) 

the heat goes. 

To straighten the zone plate 
2

h
z  : 

 
02

1 9
0

V
W P

E h





        (44) 

 
goes absorb heat from the environment. 
Consequently, there is heat conduction through the heat flow from the compressed zone to straighten. 

Conclusions 

Thus, in solving the problem of elasticity theory for axisymmetric bending loaded circular plates, the 
formula of intensity and displacements received for the first time. Law of loading can be any type, and the type of 
resist – either. The resulting solution indicates that the effect of external forces leads to the appearance of 
temperature changes at bending of round plates and occurrence of heat flow. 
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Appendix A. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at 
http://jsdtl.sciview.net 
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