PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of a dual-slot waveguide for a refractive index biosensor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present article illustrates the modeling and optimization of a dual-slot waveguide for the application of a refractive index biosensor. The nanometer scale waveguide structure uses the silicon-on-insulator platform for the consideration of higher sensitivity and compactness of a resonator biosensor. The modal analysis is performed using the finite difference method based on full vector eigenmode calculation. The maximum field penetration in the lower index region is found for the quasi-TE mode. The sensitivity is maximized through the optimization of the waveguide dimension by relating effective refractive index with the dispersion of a waveguide. The biosensor showed the maximum calculated sensitivity of 461.327 nm/RIU and a limit-of-detection of 2.601 × 10–6 RIU (where RIU denotes refractive index unit).
Słowa kluczowe
Czasopismo
Rocznik
Strony
161--167
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Rajasthan, India
autor
  • Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Laser Center, Ibnu Sina ISIR, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
autor
  • Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Rajasthan, India
Bibliografia
  • [1] PRIETO F., SEPÚLVEDA B., CALLE A., LLOBERA A., DOMÍNGUEZ C., ABAD A., MONTOYA A., LECHUGA L.M., An integrated optical interferometric nanodevice based on silicon technology for biosensor applications, Nanotechnology 14(8), 2003, pp. 907–912.
  • [2] WYBRANOWSKI T., ZIOMKOWSKA B., CWYNAR A., KRUSZEWSKI S., The influence of displacement compounds on the binding of ochratoxin A to human serum albumin examined with fluorescence anisotropy methods, Optica Applicata 44(3), 2014, pp. 357–364.
  • [3] XUDONGFAN, WHITE I.M., SHOPOVA S.I., HONGYING ZHU, SUTER J.D., YUZE SUN, Sensitive optical biosensors for unlabeled targets: A review, Analytica Chimica Acta 620(1–2), 2008, pp. 8–26.
  • [4] TAYA S.A., EL-AGEZ T.M., KULLAB H.M., ABADLA M.M., SHABAT M.M., Theoretical study of slab waveguide optical sensor with left-handed material as a core layer, Optica Applicata 42(1), 2012, pp. 193–205.
  • [5] TAYA S.A., P-polarized surface waves in a slab waveguide with left-handed ma-terial for sensing applications, Journal of Magnetism and Magnetic Materials 377, 2015, pp. 281–285.
  • [6] WENWEI NIU, MING HUANG, ZHE XIAO, JINGJING YANG, Nonlinear planar optical waveguide sensor loaded with metamaterials, Optoelectronics and Advanced Materials – Rapid Communications 5(10), 2011, pp. 1039–1045.
  • [7] TAYA S.A., Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor, Opto-Electronics Review 22(4), 2014, pp. 252–257.
  • [8] TAYA S.A., MAHDI S.S., ALKANOO A.A., QADOURA I.M., Slab waveguide with conducting interfaces as an efficient optical sensor: TE case, Journal of Modern Optics 64(8), 2017, pp. 836–843.
  • [9] TAYA S.A., JARADA A.A., KULLAB H.M., Slab waveguide sensor utilizing left-handed material core and substrate layers, Optik – International Journal for Light and Electron Optics 127(19), 2016, pp.7732–7739.
  • [10] TAYA S.A., Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide, Optik – International Journal for Light and Electron Optics 126(14), 2015, pp. 1319–1323.
  • [11] TAYA S.A., Theoretical investigation of slab waveguide sensor using anisotropic metamaterial, Optica Applicata 45(3), 2015, pp. 405–417.
  • [12] RINDORF L., JENSEN J.B., DUFVA M., PEDERSEN L.H., HØIBY P.E., BANG O., Photonic crystal fiber long-period gratings for biochemical sensing, Optics Express 14(18), 2006, pp. 8224–8231.
  • [13] PIBIN BING, JIANQUAN YAO, YING LU, ZHONGYANG LI, A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels, Optica Applicata 42(3), 2012, pp. 493–501.
  • [14] SHAHEEN S.A., TAYA S.A., Propagation of p-polarized light in photonic crystal for sensor application, Chinese Journal of Physics 55(2), 2017, pp. 571–582.
  • [15] TAYA S.A., SHAHEEN S. A., ALKANOO A.A., Photonic crystal as a refractometric sensor operated in reflection mode, Superlattices and Microstructures 101, 2017, pp. 299–305.
  • [16] CHUNG-YEN CHAO, FUNG W., GUO L.J., Polymer microring resonators for biochemical sensing applications, IEEE Journal of Selected Topics in Quantum Electronics 12(1), 2006, pp. 134–142.
  • [17] YUZE SUN, XUDONG FAN, Optical ring resonators for biochemical and chemical sensing, Analytical and Bioanalytical Chemistry 399(1), 2011, pp. 205–211.
  • [18] SAHU S., KOZADAEV K. V, SINGH G., Michelson interferometer based refractive index biosensor, [In] 13th International Conference on Fibre Optics and Photonics 2016, December 4–8, 2016, Kanpur India, OSA Technical Digest, article ID Th3A.60.
  • [19] MING-HUNG CHIU, SHINN-FWU WANG, RONG-SENG CHANG, D-type fiber biosensor based on surface -plasmon resonance technology and heterodyne interferometry, Optics Letters 30(3), 2005, pp. 233–235.
  • [20] CHIEN F.-C., CHEN S.-J., A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes, Biosensors and Bioelectronics 20(3), 2004, pp. 633–642.
  • [21] BIN WU, QING-KANG WANG, Investigation of highly sensitive surface plasmon resonance biosensors with Au nanoparticles embedded dielectric film using rigorous coupled wave analysis, Optica Applicata 39(1), 2009, pp. 31–41.
  • [22] TALEBIFARD S., SCHMIDT S., WEI SHI, WENXUAN WU, JAEGER N.A.F., KWOK E., RATNER D.M., CHROSTOWSKI L., Optimized sensitivity of silicon-on-insulator (SOI) strip waveguide resonator sensor, Biomedical Optics Express 8(2), 2017, pp. 500–511.
  • [23] PASSARO V.M.N., DELL’OLIO F., CIMINELLI C., ARMENISE M.N., Efficient chemical sensing by coupled slot SOI waveguides, Sensors 9(2), 2009, pp. 1012–1032.
  • [24] CHROSTOWSKI L., HOCHBERG M., Silicon Photonics Design: From Devices to Systems, Cambridge University Press, 2015, p. 437.
  • [25] DAR T., HOMOLA J., RAHMAN B.M.A., RAJARAJAN M., Label-free slot-waveguide biosensor for the detection of DNA hybridization, Applied Optics 51(34), 2012, pp. 8195–8202.
  • [26] PALMER K.F., WILLIAMS D., Optical properties of water in the near infrared, Journal of the Optical Society of America 64(8), 1974, pp. 1107–1110.
  • [27] HAISHAN SUN, ANTAO CHEN, DALTON L.R., Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing, IEEE Photonics Journal 1(1), 2009, pp. 48–57.
  • [28] CARLBORG C.F., GYLFASON K.B., KAŹMIERCZAK A., DORTU F., BAÑULS POLO M.J., MAQUIEIRA CATALA A., KRESBACH G.M., SOHLSTRÖM H., MOH T., VIVIEN L., POPPLEWELL J., RONAN G., BARRIOS C.A., STEMME G., VAN DER WIJNGAART W., A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips, Lab on a Chip 10(3), 2010, pp. 281–290.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c540482-6ba0-4415-9f61-180f92b160cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.