PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effects of Grain Boundary Structures on Mechanical Properties in Nanocrystalline Al Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the effects of grain boundary structures on mechanical properties of nanocrystalline Al-0.7Mg-1.0Cu alloy using nanoindentation system. Grain boundary structure transforms to high angle grain boundaries from low angle ones with increase of heat treatment temperature and the transformation temperature is about 400°C. Young’s modulus and hardness are higher in sample with low angle grain boundaries, while creep length is larger in sample with high angle ones. These results indicate that progress of plastic deformation at room temperature is more difficult in sample with low angle ones. During compression test at 200°C, strain softening occurs in all samples. However, yield strength in sample with low angle grain boundaries is higher twice than that with high angle ones due to higher activation energy for grain boundary sliding.
Twórcy
autor
  • Korea Institute of Industrial Technology: Incheon, 21999 Republic of Korea
  • Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
autor
  • Korea Institute of Industrial Technology: Incheon, 21999 Republic of Korea
autor
  • Korea Institute of Industrial Technology: Incheon, 21999 Republic of Korea
Bibliografia
  • [1] J. Cintas, E. S. Caballero, J. M. Montes, F. G. Cuevas, C. Arevalo, Adv. Mater. Sci. Eng. 2014, 1 (2014).
  • [2] Y. Liu, Z. Han, H. Cong, Wear 268, 976 (2010).
  • [3] G. Jeong, J. Park, S. Nam, S. E. Shin, J. Shin, D. Bae, H. Choi, Archives of Metallurgy and Materials 60 (2), 1287 (2015).
  • [4] M. Yu. Gutkin, I. A. Ovid’ko, N. V. Skiba, Phys. Solid State 47, 1662 (2005).
  • [5] H. Van Swygenhoven, M. Spaczer, A. Caro, Acta Mater. 47, 3117 (1999).
  • [6] Y. Xun, M. J. Tan, K. M. Liew, Scripta Mater. 61 (1), 76 (2009).
  • [7] Y. Xun, M. J. Tan, K. M. Liew, J. Mater. Processing Tech. 162-163, 429 (2005).
  • [8] T. J. Rupert, J. Appl. Phys. 114, 033527 (2013).
  • [9] T. R. McNelly, D. L. Swisher, M. T. Perez-Prado, Metall. Mater. Trans. A 33, 279 (2002).
  • [10] Y. Rao, A. J. Waddon, R. J. Farris, Polymer 42 (13), 5925 (2001).
  • [11] A. C. Fisher-Crips, Nanoindentation, Springer-Verlag, New York 2002.
  • [12] M. S. Asl, B. Nayebi, A. Motallebzadeh, M. Shokouhimehr, Compos. B Eng. 175, 107153 (2019).
  • [13] S. Sinha, R. Mirshams, T. Wang, S. Nene, M. Frank, K. Liu, R. Mishra, Sci. Rep. 9, 6639 (2019).
  • [14] L. Melk, J. J. R. Rovira, F. García-Marro, M.-L. Antti, B. Milsom, M. J. Reece, M. Anglada Ceram. Int. 41, 2453 (2015).
  • [15] G. He, C. Xu, C. Liu, H. Liu, Mater. Des. 202, 109459 (2021).
  • [16] Q. Duan, H. Pan, B. Fu, J. Yan, Steel Res. Int. 2019, 1900317 (2019).
  • [17] C. S. Pande, K. P. Cooper, Prog. Mater. Sci. 54 (6), 689 (2009).
  • [18] C. Zheng, Y. W. Zhang, Mater. Sci. Eng. A 423 (1-2), 97 (2006).
  • [19] C.-W. Nan, X. Li, K. Cai, J. Tong, J. Mater. Sci. Letters 17 (22), 1917 (1998).
  • [20] M. Becton, X. Wang, Phys. Chem. Chem. Phys. 17, 21894 (2015).
  • [21] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, T. G. Langdon, Mater. Sci. Eng. A 265, 188 (1999).
  • [22] P. R. Rios, F. S. Jr, H. R. Z. Sandim, R. L. Plaut, A. F. Padiha, Mater. Research 8 (3), 225 (2005).
  • [23] Ah. Cottrell In: Chalmers B, Editor. Theory of Dislocations, Progress in Metal Physics. 4, 251 (1953) London, Pergamon Press.
  • [24] R. W. Cahn, Proceedings of the Physical Society, Ser. AI. 63 (364), 323 (1950).
  • [25] W. C. Oliver, G. M. Pharr, J. Mater. Res. 7, 1564 (1992).
  • [26] D. Jang, M. Atzmon, J. App. Phy. 93 (11), 9282 (2003).
Uwagi
1. This study has been conducted with the support of the Korea Institute of Industrial Technology as “Development of root technology for multi-product flexible production (KITECH EO-20-0015)”
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c540184-39a7-432a-bc96-81b6ac23b1cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.