PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forming the structure and properties of hybrid coatings on reversible rotating extrusion dies

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this monograph was to develop the methodology of formation, classification of properties and analysis of the structure of the surface layers, particularly the zone connecting the core and the coating and between the single layers created on the working surfaces of dies for the plastic formation on non-ferrous metals, with particular consideration to the specific nature of the extrusion process with reversibly rotating die (the KOBO method). Design/methodology/approach: Nanocrystalline structure layers production technology was developed, which included nanocomposite and low-friction layers with desired usable properties ensuring increased durability, abrasive and adhesion wear strength. The production process of dual-layer coatings, such as hard nitride layer - low friction DLC layer, was carried out in the continuous mode, on a device furnished with technologies of lateral, rotating cathodes and central rotating cathode, within one technological process. The developed coatings were tested under the working conditions for the elements coated with them (tools - dies), in order to establish the anticipated responses and properties during their use. Findings: The numerous interdisciplinary tests and analyses carried out in the scope of material science, production technology and computer techniques as well as the results obtained provided foundation for the formation of structure and tribological properties of the dies by controlled process conditions. The required final quality and durability of the tools for plastic metal formation in the extrusion process was obtained, which has been proven under operating conditions. Practical implications: Economically efficient process improvement, increased production efficiency and quality and products reliability through increased durability and unfailing operation time of tools for plastic formation of non-ferrous metals and improved usable properties shall guarantee measurable economic effects to the manufacturers and users of the products. Moreover, it will enhance their competitiveness both on the domestic and overseas markets. Originality/value: The Author’s original approach was the development of a dual-layer coating within one process. Such coatings consists of the internal hard PVD layer providing the appropriate hardness, strength, low thermal conductivity and restricting the impact of external factors on the wear process of the dies used for non-ferrous metals extrusion and the external low-friction layer providing good tribological properties, which, in combination with the appropriate formation of the transition zone between the base material and coating, and between the single layers in the coating, providing adhesion sufficiently high, enabled increased operating durability of the dies, and this has been proved in this paper.
Rocznik
Strony
159--224
Opis fizyczny
Bibliogr. 203 poz., rys., tab.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, Materiały inżynierskie i projektowanie materiałowe, Podstawy nauki o materiałach i metaloznawstwo, Wydanie II zmienione i uzupełnione, Wydawnictwa Naukowo-Techniczne, Warszawa, 2006.
  • [2] L.A. Dobrzański, Podstawy kształtowania struktury i własności materiałów metalowych, Wydawnictwo Politechniki Śląskiej, Gliwice, 2007.
  • [3] H. Dybiec, Submikrostrukturalne stopy aluminium, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków, 2008.
  • [4] S. Veprek, M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surface and Coatings Technology 202 (2008) 5063-5073.
  • [5] M. Betiuk, Rozwój technologii PA PVD-Arc - powłoki nanowarstwowe na narzędziach, Inżynieria Powierzchni 3 (2008) 16-22.
  • [6] C. Donnet, A. Erdemir, Historical developments and new trends in tribological and solid lubricant coatings, Surface and Coatings Technology 180-181 (2004) 76-84.
  • [7] W. Bochniak, Teoretyczne i praktyczne aspekty plastycznego kształtowania metali, Wydawnictwa AGH, Kraków, 2009.
  • [8] S. Tomovic-Petrovic, O. Jensrund, Extrusion of silicon-rich AlMgSi alloys, Journal of Materials Processing Technology 212 (2012) 1437-1442.
  • [9] H.I. Demirci, H. Evlen, Effect of extrusion ratio on the wear behaviour of Al-Si and Al-Mg alloys, Journal of Alloys and Compounds 510 (2012) 26-32.
  • [10] X. Ma, M.B. de Rooij, D.J. Schipper, Friction conditions in the bearing area of an aluminium extrusion process, Wear 278-279 (2012) 1-8.
  • [11] F. Krumphals, T. Wlanis, R. Sievert, V. Wieser, C. Sommitsch, Damage analysis of extrusion tools made from the austenitic hot work tool steel Bohler W750, Computational Materials Science 50 (2011) 1250-1255.
  • [12] T. Bjork, R. Westergard, S. Hogmark, Wear of surface dies for aluminum extrusion - a case study, Wear 249 (2001) 316-323.
  • [13] L.A. Dobrzański, K. Lukaszkowicz, Mechanical properties of monolayer coatings deposited by PVD techniques, Archives of Materials Science and Engineering 28/9 (2007) 549-556.
  • [14] K. Lukaszkowicz, L.A. Dobrzański, A. Zarychta, L. Cunha, Mechanical properties of multilayer coatings deposited by PVD techniques onto the brass substrate, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 47-52.
  • [15] K. Lukaszkowicz, L.A. Dobrzański, Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5-1 steel substrate, Journal of Materials Science 43 (2008) 3400-3407.
  • [16] K. Lukaszkowicz, L.A. Dobrzański, W. Kwaśny, K. Labisz, M. Pancielejko, Microstructure and mechanical properties of nanocomposite coatingsdeposited by cathodic arc evaporation, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 156-163.
  • [17] A.A. Voevodin, J.S. Zabinski, Nanocomposite and nanostructured tribological materials for space applications, Composites Science and Technology 65 (2005) 741-748.
  • [18] D. Yu, C. Wang, X. Cheng, F. Zhang, Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology, Thin Solid Films 517 (2009) 4950-4955.
  • [19] A.A. Voevodin, J.G. Jones, T.C. Back, J.S. Zabinski, V.E. Strel'nitzki, I.I. Aksenov, Comparative study of wear-resistant DLC and fullerene-like CNx coatings produced by pulsed laser and filtered cathodic arc depositions, Surface and Coatings Technology 197 (2005) 116-125.
  • [20] L.A. Dobrzański, K. Lukaszkowicz, Comparison of structure and properties of the electroplating, hybrid (electroplating + PVD) and PVD coatings deposited onto the brass substrate, Materials Science Forum 591-593 (2008) 860-864.
  • [21] M. Sokovic, J. Kopac, L.A. Dobrzański, J. Mikuła, K. Gołombek, D. Pakuła, Cutting characteristics of PVD and CVD-coated ceramic tool inserts, Tribology in Industry 28 (2006) 3-8.
  • [22] K. Lukaszkowicz, A. Kriz, J. Sondor, Structure and adhesion of thin coatings deposited by PVD technology on the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Archives of Materials Science and Engineering 51/1 (2011) 40-47.
  • [23] A. Dobrzańska-Danikiewicz, K. Lukaszkowicz, Strategiczne kierunki rozwojowe technologii nakładania powłok PVD na stop miedzi z cynkiem, Inżynieria Materiałowa 4 (2011) 381-384.
  • [24] L.A. Dobrzański, W. Kwaśny, R. Shishkov, J. Madejski, Effect of the deposition parameters on the properties of the two-layer surface coatings obtained using magnetron sputtering, Journal of Materials Processing Technology 113 (2001) 495-501.
  • [25] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55 (2010) 187-193.
  • [26] L.A. Dobrzański, M. Polok-Rubiniec, M. Adamiak, PVD coatings deposited onto plasma nitrided X37CrMoV5-1 type steel, International Journal of Materials and Product Technology 33 (2008) 226-239.
  • [27] L.A. Dobrzański, M. Polok, M. Adamiak, M.G. Faga, Improvement wear resistance of hot-work tool steel by plasma nitriding and PVD coatings, Proceedings of the 1st International Conference “Heat Treatment and Surface Engineering of Tools and Dies” IFHTSE2005, Pula, Croatia, 2005, 185-191.
  • [28] L.A. Dobrzański, M. Polok, M. Adamiak, Struktura i własności powłok PVD na azotowanej stali narzędziowej X37CrMoV5-1 do pracy na gorąco, Materiały 3 Konferencji Naukowej „Materials, Mechanical and Manufacturing Engineering” M3E'2005, Gliwice-Wisła, 2005, 159-166.
  • [29] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Structure and properties of laser alloyed surface layers on the hot-work tool steel, Journal of Materials Processing Technology 175 (2006) 45-54.
  • [30] L.A. Dobrzański, K. Labisz, M. Piec, J. Lelątko, A. Klimpel, Structure and properties of the 32CrMoV12-28 steel alloyed with WC powder using HPDL laser, Materials Science Forum 530-531 (2006) 334-339.
  • [31] L.A. Dobrzański, A. Polok, E. Jonda, Structure and properties of surface layers obtained by alloying of the hot work tool steels, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 329-332.
  • [32] L.A. Dobrzański, J. Domagała-Dubiel, K. Labisz, E. Hajduczek, A. Klimpel, Effect of laser treatment on microstructure and properties of cast magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 57-64.
  • [33] L.A. Dobrzański, G. Matula, A. Varez, B. Levenfeld, J.M. Torralba, Fabrication methods and heat treatment conditions effect on tribological properties of high speed steel, Journal of Materials Processing Technology 157-158 (2004) 44-51.
  • [34] A. Kloc, L.A. Dobrzański, G. Matula, J.M. Torralba, Effect of manufacturing methods on structure and properties of gradient tool materials with non-alloy steel matrix reinforced with the HS6-5-2 type high-speed steel, Materials Science Forum 539-543 (2007) 2749-2754.
  • [35] J. Adamczyk, E. Hajduczek, Wpływ powierzchniowych warstw dyfuzyjnych na zmęczenie cieplne stali narzędziowych do pracy na gorąco WCLV, Metaloznawstwo i Obróbka Cieplna 66 (1983) 9-14.
  • [36] L.A. Dobrzański, J. Mazurkiewicz, E. Hajduczek, J. Madejski, Comparison on thermal fatigue resistance and structure of the 47CrMoWVTiCeZr16-26-8 hot-work tool steel with X40CrMoV5-1 type one, Journal of Materials [56 Processing Technology 113 (2001) 527-538.
  • [37] L.A. Dobrzański, Structure and properties of high-speed steels with wear resistant casus or coatings, Journal of Materials Processing Technology 109 (2001) 44-51.
  • [38] L.A. Dobrzański, W. Kasprzak, A. Zarychta, M. Ligarsli, J. Mazurkiewicz, Structure and properties of W-Mo-V-Co 11-0-2-5 type and W-Mo-V 11-0-2 type high-speed steels, Journal of Materials Processing Technology 64 (1997) 93-99.
  • [39] W. Libura, Płynięcie metali w procesie wyciskania, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków, 2008.
  • [40] P.K. Saha, Aluminium extrusion technology, ASM International, Materials Park, Ohio, 2000.
  • [41] M. Bauser, G. Sauer, K. Siegert (eds.), Extrusion, ASM International, Materials Park, Ohio, 2006.
  • [42] J. Richert, Innowacyjne metody przeróbki plastycznej metali, Wydawnictwa AGH, Kraków, 2010.
  • [43] Z. Rdzawski, Miedź stopowa, Wydawnictwo Politechniki Śląskiej, Gliwice, 2009.
  • [44] W. Bochniak, A. Korbel, R. Szyndler, R. Hanasz, F. Stalony-Dobrzański, L. Błaż, P. Starski, New forming method of bevel gears from structural steel, Journal of Materials Processing Technology 173 (2006) 75-83.
  • [45] W. Bochniak, A. Korbel, KOBO type forming: forging of metals under complex conditions of the process, Journal of Materials Processing Technology 134 (2003) 120-134.
  • [46] A. Korbel, W. Bochniak, Refinement and control of the metal structure elements by plastic deformation, Scripta Materialia 51 (2004) 755-759.
  • [47] W. Bochniak, K. Pantoł, Structure of cooper subjected to changes of the loading scheme during rolling, Journal of Materials Processing Technology 208 (2008) 366-371.
  • [48] A. Korbel, W. Bochniak, Sposób ciągnienia materiałów zwłaszcza metalicznych - Patent RP Nr 179347 (pat. udzielono 31.08.2000).
  • [49] A. Walocha, A. Korbel, W. Bochniak, P. Ostachowski, [69 Efekt cieplny w procesie wyciskania aluminium metodą KOBO, Rudy i Metale Nieżelazne 11 (2009) 773-777.
  • [50] W. Bochniak, P. Ostachowski, A. Korbel, K. Pieła, Superplastic flow of metals extruded by Kobo method, Materials Science Forum 667-669 (2011) 1039-1044.
  • [51] L. Błaż, M. Sugamata, J. Kanek, J. Sobota, G. Wloch, W. Bochniak, A. Kula, Structure and properties of 6061 + 26 mass% Si aluminum alloy produced via coupled rapid solidification and KOBO-extrusion of powder, Journal of Materials Processing Technology 209 (2009) 4329-4336.
  • [52] W. Bochniak, A. Korbel, L. Błaż, A. Brzostowicz, Wytwarzanie drobnoziarnistych wyrobów ze stopu aluminium 7075 w procesie wyciskania metodą KOBO, Przegląd Mechaniczny 10 (2009) 33-37.
  • [53] K. Pieła, W. Bochniak, A. Korbel, P. Stachowski, L. Błaż, Wpływ sposobu odkształcenia na strukturę, własności mechaniczne i stabilność cieplną cynku, Rudy i Metale Nieżelazne 6 (2009) 356-361.
  • [54] P. Ostachowski, A. Korbel, W. Bochniak, M. Łagoda, Własności mechaniczne drutów aluminiowych otrzymanych metodą KOBO, Rudy i Metale Nieżelazne 11 (2009) 707-711. A.
  • [55] Brzostowicz, A. Korbel, W. Bochniak, L. Błaż, W. Suder, Zjawisko Ludersa w aluminium wyciśniętym metodą KOBO, Rudy i Metale Nieżelazne 11 (2009) 663-665.
  • [56] A. Korbel, W. Bochniak, P. Stachowski, L. Błaż, Viscoplastic flow of metal in dynamic conditions of complex strain scheme, Metallurgical and Materials Transactions A 42 (2011) 2881-2897.
  • [57] A. Korbel, R. Szyndler, Innowacyjne rozwiązania w obszarze obróbki plastycznej, Obróbka Plastyczna Metali 3 (2010) 203-216.
  • [58] L.A. Dobrzański, A.D. Dobrzańska-Danikiewcz, Obróbka powierzchni materiałów inżynierskich, Open Access Library, Volume 5 (2011) 1-480.
  • [59] M. Pellizzari, High temperature wear and friction behaviour of nitrided, PVD-duplex and CVD coated tool steel against 6082 Al alloy, Wear 271 (2011) 2089-2099.
  • [60] M. Blicharski, Inżynieria powierzchni, Wydawnictwa Naukowo-Techniczne, Warszawa, 2009.
  • [61] P. Kula, Inżynieria warstwy wierzchniej, Wydawnictwo Politechniki Łódzkiej, Łódź, 2000.
  • [62] M. Gierzyńska-Dolna, Tarcie, zużycie i smarowanie w obróbce plastycznej metali, Wydawnictwa Naukowo-Techniczne, Warszawa, 1983.
  • [63] R. Skoblik, L. Wilczewski, Odlewnictwo i obróbka plastyczna: laboratorium, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 1997.
  • [64] P.H. Mayrhofer, C. Mittere, L. Hulman, H. Clemens, Microstructural design of hard coatings, Progress in Materials Science 51 (2006) 1032-1114.
  • [65] W. Dobrucki, Zarys obróbki plastycznej metali, Wydawnictwo Śląsk, Katowice, 1975.
  • [66] M. Morawiecki, L. Sadok, E. Wosiek, Przeróbka plastyczna. Podstawy teoretyczne, Wydawnictwo Śląsk, Katowice, 1986. S.
  • [67] Muenstermann, R. Telle, Wear and corrosion resistance of alumina dies for isothermal semi-solid processing of steel, Wear 267 (2009) 1566-1573.
  • [68] I. Nowotyska, S. Kut, Numeryczna analiza wpływu kąta matrycy na deformację narzędzi podczas wyciskania, Rudy i Metale Nieżelazne 6 (2010) 337-340.
  • [69] L.A. Dobrzański, E. Hajduczek, J. Marciniak, R. Nowosielski, Obróbka cieplna materiałów narzędziowych, Wydawnictwo Politechniki Śląskiej, Gliwice, 1990.
  • [70] E. Żmihorski, Stale narzędziowe i obróbka cieplna narzędzi, Wydawnictwa Naukowo-Techniczne, Warszawa, 1976.
  • [71] L.A. Dobrzański, J. Mazurkiewicz, E. Hajduczek, Effect of thermal treatment on structure of newly developer 47CrMoWVTiCeZr16-26-8 hot work tool steel, Journal of Processing Technology 157-158 (2004) 472-484.
  • [72] S. Syahrullail, B.M. Zubil, C.S.N. Azwadi, M.J.M. Ridzuan, Experimental evaluation of palm oil as lubricant in cold forward extrusion process, International Journal of Mechanical Sciences 53 (2011) 549-555.
  • [73] S.S. Akhtar, A.F.M. Arif, B.S. Yilbas, Nitriding of aluminum extrusion die: Effect of die geometry, Journal of Materials Engineering and Performance 19 (2010) 401-412.
  • [74] M. Tercejl, A. Smolej, P. Fajfar, R. Turk, Laboratory assessment of wear on nitrided surfaces of dies for hot extrusion of aluminium, Tribology International 40 (2007) 374-384.
  • [75] T. Bjork, M. Berger, R. Westergard, S. Hogmark, J. Bergstrom, New physical vapour deposition coatings applied to extrusion dies, Surface and Coatings Technology 146-147 (2001) 33-41.
  • [76] M.B. Karamis, H. Sert, The role of the PVD TiN coating in wear behaviour of aluminium extrusion die, Wear 217 (1998) 46-55.
  • [77] K. Bobin, N. Bagcivan, P. Immich, C. Warnke, F. Klocke, C. Zeppenfeld, P. Mattfeld, Advancement of a nanolaminated TiHfN/CrN PVD tool coating by a nanostructured CrN top layer in interaction with biodegradable lubricant for green metal forming, Surface and Coatings Technology 203 (2009) 3184-3188.
  • [78] J. Smolik, Rola warstwy hybrydowej typu warstwa azotowana/powłoka CrN w procesie zwiększania trwałości matryc kuźniczych, Inżynieria Materiałowa 29 (2008) 891-894.
  • [79] M. Polok-Rubiniec, L.A. Dobrzański, M. Adamiak, Comparison of the PVD coatings deposited onto plasma nitrided steel, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 172-179.
  • [80] J. Smolik, A. Mazurkiewicz, Rozwój hybrydowych technologii powierzchniowych w oparciu o praktyczne zastosowania przemysłowe, Problemy Eksploatacji 3 (2010) 105-114.
  • [81] R.R. Chromik, C.C. Baker, A.A. Voevodin, K.J. Wahl, In situ tribometry of solid lubricant nanocomposite coatings, Wear 262 (2007) 1239-1252.
  • [82] R. Rodriguez-Baracaldo, J.A. Benito, E.S. Puchi-Cabrera, M.H. Staia, High temperature wear resistance if (TiAl)N PVD coating on untreated and gas nitrided AISI H13 steel with different heat treatments, Wear 262 (2007) 380-389.
  • [83] T. Bjork, J. Bergstrom, S. Hogmark, Tribological simulation of aluminium hot extrusion, Wear 224 (1999) 216-225.
  • [84] T. Bjork, R. Westergard, S. Hogmark, J. Bergstrom, P. Hedenqvist, Physical vapour deposition duplex coatings for aluminium extrusion dies, Wear 225-229 (1999) 1123-1130.
  • [85] L.A. Dobrzański, K. Lukaszkowicz, A. Kriz, Properties of the multi-layer Ti/CrN and Ti/TiAlN coatings deposited with the PVD technique onto the brass substrate, Journal of Materials Processing Technology 143-144 (2003) 832-837.
  • [86] B. Tlili, C. Nouveau, M.J. Waloch, M. Nasi, T. Ghrib, Effect of layer thickness on thermal properties of multilayer thin films produced by PVD, Vacuum 86 (2012) 1048-1056.
  • [87] A. Gilewicz, B. Warcholiński, P. Myśliński, W. Szymański, Anti-wear multilayer coatings based on chromium nitride for wood machining tools, Wear 270 (2010) 32-38.
  • [88] K. Lukaszkowicz, L.A. Dobrzański, M. Staszuk, M. Pancielejko, Comparison of the PVD gradient coatings deposited onto X40CrMoV5-1 and HS6-5-2 tool steel substrate, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 79-82.
  • [89] M. Antonom, I. Hussainova, F. Sergejev, P. Kulu, A. Gregor, Assessment of gradient and nanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions, Wear 267 (2009) 898-906.
  • [90] A.A. Voevodin, J.S. Zabinski, Supertough wear-resistant coatings with ‘chameleon’ surface adaptation, Thin Solid Films 370 (2000) 223-231.
  • [91] M. Wysiecki, Nowoczesne materiały narzędziowe, Wydawnictwa Naukowo-Techniczne, Warszawa, 1997.
  • [92] L.A. Dobrzański, K. Lukaszkowicz, A. Zarychta, Mechanical properties of monolayer coatings deposited by PVD techniques, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 423-426.
  • [93] P. Panjan, M. Cekada, R. Kirn, M. Sokolic, Improvement of die-casting tools with duplex treatment, Surface and Coatings Technology 180-181 (2004) 561-565.
  • [94] M. Sokovic, J. Mikuła, L.A. Dobrzański, J. Kopac, L. Kosec, P. Pandan, J. Madejski, A. Piech, Cutting properties of the Al2O3+SiC(w) based tool ceramic reinforced with the PVD and CVD wear resistant coatings, Journal of Materials Processing Technology 164-165 (2005) 924-929.
  • [95] K. Lukaszkowicz, Review of nanocomposite thin films and coatings deposited by PVD and CVD technology, in: Nanomaterials, Mohammed Muzibur Rahman (Ed.), Intech, Rijeka, Croatia, 2011, 145-162.
  • [96] C.C. Koch, I.A. Ovid'ko, S. Seal, S. Veprek, Structural nanocrystalline materials. Fundamentals and applications, Cambridge University Press, Cambridge, 2007.
  • [97] K. Lukaszkowicz, A. Czyżniewski, W. Kwaśny, M. Pancielejko, Structure and mechanical properties of PVD coatings deposited onto the X40CrMoV5-1 hot work tool steel substrate, Vacuum 86 (2012) 1186-1194.
  • [98] K. Lukaszkowicz, J. Konieczny, Microstructure and mechanical properties of PVD nanocrystalline layers, Solid State Phenomena 186 (2012) 230-233.
  • [99] K. Lukaszkowicz, J. Sondor, A. Kriz, M. Pancielejko, Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Journal of Materials Science 45 (2010) 1629-1637.
  • [100] E. Sheinman, Superhard coatings from nanocomposites. Review of foreign publications, Metal Science and Heat Treatment 50 (2008) 600-605.
  • [101] S. Veprek, R.F. Zhang, M.G.J. Veprek-Heijman, S.H. Sheng, A.S. Argon, Superhard nanocomposites: Origin of Hardness enhancement properties and applications, Surface and Coatings Technology 2004 (2010) 1898-1906.
  • [102] S. Zhang, D. Sun, X.L. Bui, Magnetron Sputtered Hard and Yet Tough Nanocomposite Coatings with Case Studies: Nanocrystalline TiN Embedded in Amorphous SiNx, in: Nanocomposite Thin Films and Coatings, S. Zhang and N. Ali (Eds.), Imperial College Press, London, 2007, 1-110.
  • [103] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.D. Mannling, P. Nesladek, G. Dollinger, A. Bergmaier, Composition, nanostructure and origin of the ultrahardness in nc-TiN a-Si3N4 a- and nc-TiSi2 nanocomposites with Hv 80 to 105 GPa, Surface and Coatings Technology 133-134 (2000) 152-159.
  • [104] S. Veprek, H.D. Mannling, P. Karvankova, J. Prochazka, The issue of the reproducibility of deposition of superhard nanocomposites with hardness of ≥ 50 GPa, Surface and Coatings Technology 201 (2006) 6064-6070.
  • [105] C.W. Zou, H.J. Wang, M. Li, J.F. Yu, C.S. Liu, L.P. Guo, D.J. Fu, Characterization and properties of TiN-containing amorphous Ti-Si-N nanocomposite coatings prepared by arc assisted middle frequency magnetron sputtering, Vacuum 84 (2010) 817-822.
  • [106] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere, A. Cavaleiro, E. Alves, Characterisation of Tij- xSixNy nanocomposite coatings, Surface and Coatings Technology 133-134 (2000) 307-313.
  • [107] M. Audronis, A. Leyland, P.J. Kelly, A. Mathews, Composition and structure-property relationships of chromium-diboride/molybdenum-disulhipe PVD nanocomposite hard coatings deposited by pulsed magnetron sputtering, Applied Physics A 91 (2008) 77-86.
  • [108] K. Lukaszkowicz, L.A. Dobrzański, J. Sondor, Microstructure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology, in: Advances in diverse industrial applications of nanocomposites, Boreddy S.R. Reddy (Ed.), Intech, Rijeka, Croatia, 2011, 1-16.
  • [109] Y.C. Cheng, T. Browne, B. Heckerman, E.I. Meletis, Mechanical and tribological properties of nanocomposite TiSiN coatings, Surface and Coatings Technology 204 (2010) 2123-2129.
  • [110] K. Polychronopoulou, M.A. Baker, C. Rebholz, J. Neidhardt, M. O'Sullivan, A.E. Reiter, K. Kanakis, A. Leyland, A. Matthews, C. Mitterer, The nanostructure, wear and corrosion performance of arc-evaporated CrBxNy nanocomposite coatings, Surface and Coatings Technology 204 (2009) 246-255.
  • [111] S. Veprek, M. Haussmann, S. Reiprich, L. Shizhi, J. Dian, Novel thermodynamically stable and oxidation resistant superhard coating material, Surface and Coatings Technology 86-87 (1996) 394-401.
  • [112] S. Veprek, Conventional and new approaches towards the design of novel superhard materials, Surface and Coatings Technology 97 (1997) 15-22.
  • [113] S. Veprek, Electronic and mechanical properties of nanocrystalline composites when approaching molecular size, Thin Solid Films 297 (1997) 145-153.
  • [114] S.Veprek, A.S. Argon, Towards the understanding of mechanical properties of super- and ultrahard nanocomposites, Journal of Vacuum Science and Technology B 20 (2002) 650-664.
  • [115] J. Karch, R. Birringer, H. Gleiter, Ceramics ductile at low temperature , Nature 330 (1987) 556-558.
  • [116] R.W. Siegel, G.E. Fougere, Grain size dependent mechanical properties in nanophase materials, Materials Research Society Symposium Proceedings 362 (2002) 219-229.
  • [117] A.A. Voevodin, M.A. Capano, S.J.P. Laube, M.S. Donley, J.S. Zabinski, Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti-C films, Thin Solid Films 298 (1997) 107-115.
  • [118] J. Musil, Hard and superhard nanocomposite coatings, Surface and Coatings Technology 125 (2000) 322-330.
  • [119] C. Mitterer, P.H. Mayhofer, M. Beschliesser, P. Losbichler, P. Warbischler, F. Hofer, P.N. Gibsson, W. Gissler, H. Hruby, J. Musil, J. Vlcek, Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings, Surface and Coatings Technology 120-121 (1999) 405-411.
  • [120] S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films 476 (2005) 1-29.
  • [121] A.A. Voevodin, J.S. Zabinski, C. Muratore, Recent advances in hard, tough, and low friction nanocomposite coatings, Tsinghua Science and Technology 10 (2005) 665-679.
  • [122] J.J. Moor, I.W. Park, J. Lin, Nanostructured, multifunctional tribological coatings, in: Nanocomposite Thin Films and Coatings, S. Zhang and N. Ali (Eds.), Imperial College Press, London, UK, 329-379.
  • [123] J.Robertson, Diamond-like carbon, Materials Science and Engineering R 37 (2002) 129-281.
  • [124] B.C. Yeldose, B. Ramamoorthy, Characterization of DC magnetron sputtered diamond-like carbon (DLC) nanocoating, International Journal of Advanced Manufacturing Technology 38 (2008) 705-717.
  • [125] K. Holmberg, H. Ronkainen, A. Laukkanen, K. Wallin, S. Hogmark, S. Jacobson, U. Wiklund, R.M. Souza, P. Stahle, Residual stresses in TiN, DLC and MoS2 coated surfaces with regard to their tribological fracture bahaviour, Wear (2009) 2142-2156.
  • [126] A. Gilewicz, B. Warcholiński, Twarde powłoki ta-C otrzymane metodą impulsowego katodowego odparowania łukowego, Inżynieria Materiałowa 1 (2010) 50-53.
  • [127] A. Czyżniewski, W. Gulbiński, M. Pancielejko, G. Radnoczi, M. Szerencsi, Mikrostruktura i właściwości cienkich powłok węglowych modyfikowanych wolframem, Inżynieria Materiałowa 6 (2009) 529-532.
  • [128] R. Galin, M. Larsson, P. Hedenquist, Me-C:H coatings in motor vehicles, Wear 249 (2001) 302-309.
  • [129] A. Czyżniewski, Wytwarzanie i właściwości cienkich powłok węglowych modyfikowanych wolframem, Inżynieria Materiałowa 6 (2008) 772-775.
  • [130] H. Ronkainen, J. Likonen, J. Koskinen, S. Varjus, Effect of tribofilm formation on tribological performance of hydrogenated carbon coatings, Surface and Coatings Technology 79 (1996) 87-94.
  • [131] F. Vaz, L. Rebouta, M. Andritschky, M.F. da Silva, J.C. Soares, The effect of addition of Al and Si on the physical and mechanical properties of titanium nitride, Journal of Materials Processing Technology 92-93 (1999) 169-176.
  • [132] F. Vaz, L. Rebouta, P. Goudeau, T. Girardeau, J. Pacaud, J.P. Riviere, A. Traverse, Structural transitions in hard Si-based TiN coatings: the effect of bias voltage and temperature, Surface and Coatings Technology 146-147 (2001) 274-279.
  • [133] D. Rafaja, C. Wustelfeld, M. Dopita, M. Ruzicka, V. Klemm, G. Schreiber, D. Heger, M. Sima, Internal structure of clusters of partially coherent nanocrystallites in Cr-Al-N and Cr-Al-Si-N coatings, Surface and Coatings Technology 201 (2007) 9476-9484.
  • [134] P. Holubar, M. Jilek, M. Sima, Present and possible future applications of superhard nanocomposite coatings, Surface and Coatings Technology 133-134 (2000) 145-151.
  • [135] J. Kusiński, Inżynieria materiałowa - aktualne i przyszłe kierunki badań, Inżynieria Materiałowa 1 (2008) 7-13.
  • [136] A. Zieliński, Strategie badań i rozwoju w obszarze inżynierii materiałowej, Inżynieria Materiałowa 5 (2008) 514-524.
  • [137] A.D. Dobrzańska-Danikiewcz (ed.), Materials surface engineering development trends, Open Access Library 6 (2011) 1-549.
  • [138] A.D. Dobrzańska-Danikiewicz, Metodologia komputerowo zintegrowanego prognozowania rozwoju inżynierii powierzchni materiałów, Open Access Library 1/7 (2012) 1-289.
  • [139] S.J. Skrzypek, A. Baczmański, E. Kusior, Opracowanie i wdrożenie nowej nieniszczącej metody pomiaru naprężeń własnych opartej na geometrii dyfrakcji promieniowania X przy stałym kącie padania, Problemy Eksploatacji 2 (2000) 313-333.
  • [140] X. Zheng, J. Li, Y. Zhou, X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition, Acta Materialia 52 (2004) 3313-3323.
  • [141] P.J. Burnett, D.S. Rickerby, The relationship between hardness and scratch adhesion, Thin Solid Films 154 (1987) 403-416.
  • [142] K. Laue, H. Stengert, Extrusion - processes, machinery, tooling, American Society for Metals, Metals Park, Ohio, 1981.
  • [143] T. Sheppard, Extrusion of aluminium alloys, Kluwer Academic Publisher, Dordrecht/Boston/London, 1999.
  • [144] J. Smolik, Rola warstw hybrydowych typu warstwa azotowana/powłoka PVD w procesie zwiększenia trwałości matryc kuźniczych, Monograficzna seria wydawnicza Biblioteki Problemów Eksploatacji - Studia i Rozprawy, Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy, Radom, 2007.
  • [145] P. Ostachowski, Analiza mechanizmów odkształcenia w procesie wyciskania z cykliczną zmianą drogi deformacji, Praca doktorska, Akademia Górniczo-Hutnicza, Kraków, 2012.
  • [146] L. Casarotto, R. Tutsch, R. Ritter, J. Weidenmuller, A. Ziegenbein, F. Klose, H. Neuhauser, Propagation of deformation bands investigated by laser scanning extensometry, Computational Materials Science 26 (2003) 210-218.
  • [147] W. Ozgowicz, B. Grzegorczyk, Analysis of the Portevin-Le Chatelier effect in tin bronzes at elevated temperatures, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 281-289.
  • [148] E. Rizzi, P. Hahner, On the Portevein-Le Chatelier effect: theoretical modelling and numerical results, International Journal of Plasticity 20 (2004) 121-165.
  • [149] L.A. Dobrzański, T. Tański, J. Trzaska, Modeling of the optimum heat treatment conditions of Mg-Al-Zn magnesium cast alloys, International Journal of Computational Materials Science and Surface Engineering 1/5 (2007) 540-554.
  • [150] A.D. Dobrzańska-Danikiewicz, a E. Jond, J. Trzaska, A. Jagiełło, K. Labisz, Neural network aided future events scenarios presented on the example of laser surface treatment, Journal of Achievements in Materials and Manufacturing Engineering 51/2 (2011) 69-96.
  • [151] H.K. Bhadeshia, Neural Networks in Materials Science, ISIJ International 39 (1999) 966-1000.
  • [152] W. Sitek, Employment of rough data for modeling of materials properties, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 65-68.
  • [153] L.A. Dobrzański, M. Sroka, J. Dobrzański, Application of neural networks to classification of internal damages in steels working in creep service, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 303-306.
  • [154] R. Kapoor, D. Pal, J.K. Chakravartty, Use of artificial neural networks to predict the deformation behavior of Zr-2.5Nb-0.5Cu, Journal of Materials Processing Technology 169/2 (2005) 199-205.
  • [155] S. Delijaicov, A.T. Fleury, F.P.R. Martins, Application of multiple regression and neural networks to synthesize a model for peen forming process planning, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 651-656.
  • [156] F. Musharavati, A.S.M. Hamouda, Application of artificial neural networks for modelling correlations in age, hardenable aluminium alloys, Journal of Achievements in Materials and Manufacturing Engineering 41 (2010) 140-146.
  • [157] J. Trzaska, L.A. Dobrzański, Modelling of CCT diagrams for engineering and constructional steels, Journal of Materials Processing Technology 192-193 (2007) 504-510.
  • [158] L.A. Dobrzański, R. Maniara, J.H. Sokolowski, M. Krupiński, Modeling of mechanical properties of Al-Si-Cu cast alloys using the neural network, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 347-350.
  • [159] J. Trzaska, W. Sitek, L.A. Dobrzański, Application of neural networks for selection of steel grade with required hardenability, International Journal of Computational Materials Science and Surface Engineering 1/3 (2007) 366-382.
  • [160] M.E. Haque, K.V. Sudhakar, Prediction of corrosion-fatigue behavior of DP steel through artificial neural network, International Journal of Fatigue 23 (2001) 1-4.
  • [161] W. Zeng, N. Chen, Artificial neural network method applied to enthalpy of fusion of transition metals, Journal of Alloys and Compounds 257 (1997) 266-267.
  • [162] Q. Luo, A.H. Jones, High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sinV technique, Surface and Coatings Technology 205 (2010) 1403-1408.
  • [163] R. Machunze, G.C.A.M. Janssen, Stress and strain in titanium nitride thin films, Thin Solid Films 517 (2009) 5888-5893.
  • [164] S.P. Kim, H.M. Choi, S.K. Choi, A study of the crystallographic orientation with residual stress and electrical property of Al films deposited by sputtering, Thin Solid Films 322 (1998) 298-302.
  • [165] S. Govindarajan, J.J. Moore, B. Mishra, D.L. Olson, Physical vapor deposition of molybdenum and silicon thin films, Surface and Coatings Technology 68/69 (1994) 45-50.
  • [166] H.C. Barshilia, A. Ananth, J. Khan, G. Srinivas, Ar+H2 plasma etching for improved adhesion of PVD coatings on steel substrates, Vacuum 86 (2012) 1165-1173.
  • [167] A.R. Bushroa, H.H. Masjuki, M.R. Muhamad, B.D. Beake, Optimized scratch adhesion for TiSiN coatings deposited by a combination of DC and RF sputtering, Surface and Coatings Technology 206 (2011) 1837-1844.
  • [168] J. Gerth, U. Wiklund, The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel, Wear 264 (2008) 885-892.
  • [169] R. Escobar Galindo, A. van Veen, H. Schut, G.C.A.M. Janssen, R. Hoy, J.Th.M. de Hosson, Adhesion bahaviour of CrNx coatings on pre-treated metal substrates studied in situ by PBA and ESEM after annealing, Surface and Coatings Technology 199 (2005) 57-65.
  • [170] A.O. Sergici, N.X. Randall, Scratch testing of coatings, Advanced Materials and Processes 4 (2006) 1-3.
  • [171] Y. He, I. Apachitei, J. Zhou, T. Walstock, J. Duszczyk, Effect of prior plasma nitriding applied to a hot-work tool steel on the scratch-resistant properties of PACVD TiBN and TiCN coatings, Surface and Coatings Technology 201 (2006) 2534-2539.
  • [172] K.E. Pappacena, D. Singh, O.O. Ajayi, J.L. Roitbort, O.L. Erilymaz, N.G. Demas, G. Chen, Residual stresses, interfacial adhesion and tribological properties of MoN/Cu composite coatings, Wear 278-279 (2012) 62-70.
  • [173] S.H. Tamboli, V. Puri, R.K. Puri, Adhesion and stress of magnesium oxide thin films: Effect of thickness, oxidation temperature and duration, Applied Surface Science 256 (2010) 4582-4585.
  • [174] C.A. Johnson, J.A. Ruud, e R. Bruc, D. Wortman, Relationships between residual stress, microstructure and mechanical properties of electron beam-physical vapor deposition thermal barrier coatings, Surface and Coatings Technology 108-109 (1998) 80-85.
  • [175] J.A. Thornton, The microstructure of sputter-deposited coatings, Journal Vacuum Science Technology A 4 (1986) 3059-3065.
  • [176] W. Kwaśny, L.A. Dobrzański, Structure, physical properties and fractal character of surface topography of the Ti+TiC coatings on sintered high speed steel, Journal of Materials Processing Technology 164-165 (2005) 1519-1523.
  • [177] J.C. Russ, Fractal dimension measurement of engineering surfaces, International Journal of Machine Tools and Manufacture 38 (1998) 567-571.
  • [178] S. Stach, S. Roskosz, J. Cybo, J. Cwajna, Properties of salon ceramics evaluated by means of multifractal, surface stereometry and quantitative fractography techniques, Materials Characterization 60 (2009) 1151-1157.
  • [179] G. Meisel, R.B. Heimann, Correlation between surface roughness of plasma-sprayed chromium oxide coatings and powder grain size distribution: a fractal approach, Surface and Coatings Technology 185 (2004) 215-221.
  • [180] W. Kwaśny, M. Woźniak, J. Mikuła, L.A. Dobrzański, Structure, physical properties and multifractal characteristics of the PVD and CVD coatings deposition onto the Al2O3+TiC ceramics, Journal of Computational Materials Science and Surface Engineering 1 (2007) 97-113.
  • [181] H. Xie, J.A. Wang, E. Stein, Direct fractal measurement and multifractal properties of fracture surfaces, Physics Letters A 242 (1998) 41-50.
  • [182] A. J. Perry, The surface topography of titanium nitride made by chemical vapor deposition, Surface and Coatings Technology 132 (2000) 21-25.
  • [183] W. Kwaśny, Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 125-192.
  • [184] A.Kocańda, W. Presz, G. Adamczyk, Doświadczalne wyznaczenie rozkładu nacisków na powierzchni narzędzia, Obróbka Plastyczna Metali 2/3 (1995) 57-60.
  • [185] M. Lacki, Numeryczna analiza obciążenia narzędzia do wyciskania współbieżnego, Rudy Metale 11 (2001) 574-578.
  • [186] I. Nowotyńska, S. Kut, Numeryczna i eksperymentalna analiza wpływu geometrii matrycy na rozkład naprężeń i odkształceń podczas wyciskania materiałów złożonych, Rudy Metale 10 (2009) 604-608.
  • [187] F.Stalony-Dobrzański, W. Bochniak, P. Ostachowski, Rola temperatury w procesie wyciskania metali na prasie z rewersyjnie skręcaną matrycą w świetle testu teksturowego, Inżynieria Materiałowa 6 (2007) 902-906.
  • [188] X.J. Wang, K.B. Nie, X.S. Hu, Y.Q. Wang, X.J. Sa, K. Wu, Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg-Zn-Ca composite, Journal of Alloys and Compounds 532 (2012) 78-85.
  • [189] P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Effects of extrusion temperature on the nano-mesoscopic structure and mechanical properties of an Al-alloyed high-Cr ODS ferritic steel, Journal of Nuclear Materials 417 (2011) 166-1701.
  • [190] A. Korbel, W. Bochniak, P. Ostachowski, M. Łagoda, Praca niepublikowana, Akademia Górniczo-Hutnicza, Kraków, 2011.
  • [191] J. Lauridsen, N. Nedfors, U. Jansson, J. Jensen, P. Eklund, L. Hultman, Ti-B-C nanocomposite coatings deposited by magnetron sputtering, Applied Surface Science 258 (2012) 9907-9912.
  • [192] A.P. Carapeto, A.P. Serro, B.M.F. Nunes, M.C.L. Martins, S. Todorovic, M.T. Duarte, V. Andre, R. Colaco, B. Saramago, Characterization of two DLC coatings for joint prothesis: The role of albumin on the tribological bahavior, Surface and Coatings Technology 204 (2010) 3451-3458.
  • [193] D.K. Lee, D.S. Kang, J.H. Suh, C.G. Park, K.H. Kim, Synthesis and mechanical evaluation of quaternary Ti-Cr-Si-N coatings deposited by a hybrid method of arc and sputtering techniques, Surface and Coatings Technology 200 (2005) 1489-1494.
  • [194] H.W. Chen, Y.C. Chan, J.W. Lee, J.G. Duh, Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings, Surface and Coatings Technology 205 (2010) 1189-1194.
  • [195] M.H. Ahmed, J.A. Byrne, Effect of surface structure and wettability of DLC and N-DLC thin films on adsorption glycine, Applied Surface Science 258 (2012) 5166-5174.
  • [196] C. Srisang, P. Asanithi, K. Siangchaew, A. Pokaipisit, P. Limsuwan, Characterization of SiC in DLC/a-Si films prepared by pulsed filtered cathodic arc using Raman spectroscopy and XPS, Applied Surface Science 258 (2012) 5605-5609.
  • [197] P.L. Wong, F. He, X. Zhou, Interpretation of the hardness of worn DLC particles using micro-Raman spectroscopy, Tribology International 43 (2010) 1806-1810.
  • [198] P.A. Steinmann, Adhesion of TiC and Ti(C,N) coatings on steel, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films 3 (1985) 2394-2400.
  • [199] F. Ashrafizadeh, Adhesion evaluation of PVD coatings to aluminium substrate, Surface and Coatings Technology 130 (2000) 186-194.
  • [200] I. Lhermitte-Sebire, R. Colmet, R. Naslain, The adhesion between physically vapour-deposited or chemically vapour-deposition alumina and TiC-coated cemented carbides as characterized by Auger electron spectroscopy and scratch testing, Thin Solid Films 138 (1986) 221-233.
  • [201] K. Koski, J. Hosla, J. Emoult, A. Rouzaud, The connection between sputter cleaning and adhesion of thin solid films, Surface and Coatings Technology 80 (1996) 195-199.
  • [202] T. Burakowski, Rozważania o synergizmie w inżynierii materiałowej, Wydawnictwo Politechniki Radomskiej, Radom, 2004.
  • [203] M.M. Morshed, B.P. McNamara, D.C. Cameron, M.S.J. Hashmi, Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source, Journal of Materials Processing Technology 143-144 (2003) 922-926.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c52ff3a-1152-4ebc-9a47-99bce3cae4bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.