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Abstract

In order to calibrate the stripe precision of a leveling rod, an automatic laser interferometer and a vision 
measurement system were designed by Xi’an University of Technology in China. The rod was driven by a closed-
loop control and the data were collected at the stop state to ensure precision. The laser interferometer provided 
not only the long distance data but also a position feedback signal in the automatic control loop. CCD camera 
and a vision measurement method were used to inspect the stripe edge position and defect. A pixel-equivalent 
self-calibration method was designed to improve precision. ROI (regions of interest) method and an outline 
tracing method were designed to quickly extract multiple stripe edges. A combination of the image data with the 
interferometer data reduces control difficulty and ensures the measurement accuracy. The vision measurement 
method reached sub-pixel precision and the defective edges were reported. The system can automatically 
calibrate a stripe leveling rod with a high degree of efficiency and precision. 
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1. Introduction

A stripe leveling rod with a digital level is employed for automated height surveying [1]. 
The stripe leveling rod as the carrier of used scale is thereby of special interest. To obtain 
precise results, the leveling rod must be regularly calibrated [2]. All the stripe positions 
are detected and compared with a legal meter to determine the rod scale and graduation 
precision.

A laser interferometer can be used as a superior measurement standard. An optical 
microscope can be used to collimate the stripe edges. Photoelectric microscope systems were 
developed in several countries [3–5]. These systems use a slit aperture microscope to detect 
stripes with the same width as the slit. They are not suited to detect stripes of various widths but 
only narrow stripes (graduation lines) of equal width.

An automatic calibration system for invar leveling rods has been developed in Taiwan 
[6–7]. It uses a moving mechanism to move the stripe edges of the leveling rod to the CCD 
image center, and then records the laser interferometer data. The method is effective compared 
with manual collimation. For a 3 m length, the uncertainty is 21 µm. Correction of existing 
collimation deviation by image processing can make collimation easier and improve the 
measurement precision [8].

Automatic calibration systems based on CCD detection were developed in several countries 
[9−10]. The image and the interferometer data are obtained while the rod is moving. It takes 
about 90 minutes to calibrate a rod [10]. Automatic calibration systems which can calibrate 
leveling rods and find defective edges with high efficiency and high precision are highly desired 
in China. However, so far no automatic calibration system exists in China. 
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An automatic calibration system for stripe leveling rods is presented in this paper. The 
rod moves and stops automatically and rapidly. The image and the interferometer data are 
collected at the stop state to ensure precision. Several stripe edges are inspected by the vision 
measurement simultaneously. The system is highly efficient and precise. The system can 
simultaneously calibrate the leveling rod and report defective edges. This paper presents the 
automatic calibration principle and the vision measurement method.

2. Automatic calibration principle 

2.1. System introduction

The calibration system was designed in Photoelectric Measurement Technique Lab at Xi’an 
University of Technology in China. The basic setup of the calibration system is schematically 
shown in Fig. 1. It mainly consists of a rod carrier section (including a base, a guide rail, 
a screw and a worktable), a motion control section (including a motor, a drive controller and 
a drive card), a vision measurement section (including a light source, an illumination controller, 
a microscope and a CCD camera), a laser interferometer (including a reflector, a beam splitter, 
a laser head, an interferometer controller and an interferometer board), and a computer. 

Fig. 1. A schematic of the automatic calibration system.

The rolling screw and the linear sliding guide rail are installed on a marble base. The motor 
drives the screw directly, driving the worktable and the rod mounted on it to move along 
the guide rail. The computer controls the motion of the rod via the motion control section. 
The positioning control is realized by a closed-loop control. The laser interferometer is the 
positioning sensor in the closed-loop control system. 

The laser interferometer is employed to calibrate the leveling rod. According to the Abbe 
principle, the optical axis of the reflector coincides with the direction of the rod movement. 
The reflector is fixed at the starting end of the calibrated rod, so that the moving distance of the 
rod can be obtained precisely [11−12]. The laser interferometer responds quickly; it can meet 
the requirement of real-time measurement and rapid positioning control. The interferometer 
data can be obtained by the computer via its interferometer board.
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The vision measurement section detects the stripe edges which moved into its field of view. 
Due to the manufacturing process, the stripe elements are a few micrometer thick [13]. Two 
LED light sources illuminate the path along the stripe direction, thus avoiding the shadowing 
effect of the stripe elements and highlighting the edge. The green light was chosen to obtain the 
best response characteristics of CCD [14]. The microscope was designed with a large diameter 
and a long focus. The large diameter corresponds with higher optical resolution, whereas the 
long focus corresponds with minimal optical distortion. An object tele-centric beam path has 
been adopted, which effectively improves the measurement accuracy [15]. The CCD camera 
takes the stripe images and transfers them to the computer by its network card. The stripe edges 
are detected and the collimation deviations are obtained by image processing. 

The rod is installed in the rod carrier section. The motion control section controls the motion 
of the rod. The laser interferometer measures the moving distance. The vision measurement 
section obtains the collimation deviation of the detected stripe edge. The stripe edge position is 
a combination of the moving distance and the collimation deviation. The calibration system is 
controlled by an industrial computer with Windows XP as the operating system.

2.2. Automatic calibration method

The calibration process is shown in Fig. 2. The motor moves the rod. The moving distance 
of the rod is obtained by the laser interferometer in real time. The rod continuously moves 
in equal distances and then stops. When the rod stops, the laser interferometer measures the 
moving distance. At the same time, a section of the stripe image is taken with the CCD camera 
and saved in the computer memory. Then, on consecutive moves and stops of the rod, a series 
of stripe images are being saved in the computer, along with their corresponding interferometer 
data. This process continues until all of the images and the data of the rod are collected. 
The calibration process is accomplished automatically by the calibration system, without 
a need of the operator’s assistance, once the process started.

The series of images are automatically processed in succession to obtain the stripe edge 
position in the image. The edge position is correlated with the reference position (set to the 
image center) to obtain the collimation deviation. By adding the moving distance of the rod 
measured by laser interferometer, the edge position from the start position can be determined. 

 
0( ) ,X L D D k= + − ×   (1)

where: X is the measured edge position in mm, L is the interferometer value in mm, D is 
the edge position in the image in pixel, D0 is the reference position in pixel, k is the actual 
size projected onto each pixel in mm/pixel (pixel equivalent). k can be obtained by pixel 
calibration. 

The rod moves and stops automatically and rapidly. Since the images and the interferometer 
data are collected in the stop state, the motion blur is avoided and the correspondence between 
the collected images and interferometer data is guaranteed.

Combining the image data (the stripe edge position in the image) with the interferometer 
data, only a detected edge needs to exist in the field of view. The method does not require 
precise optical collimation for the detected edge, so the measurement is rapid. The method is 
not limited by the code width, so it can be used to measure leveling rods of various coding. 

Measuring with the constant spacing requires only the spacing to be smaller than the field of 
view to ensure a certain control redundancy. The method does not require accurate positioning 
of the rod, so the control is easy to implement.

Collecting the images followed by calculating the data saves the original image and data, 
which can be used for documentation of the rod.
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Fig. 2. The automatic calibration process.

2.3. Pixel-equivalent self-calibration 

To calculate the edge position according to (1), the pixel needs to be calibrated to determine 
the pixel equivalent [16]. Pixel calibration is usually performed before the measurement. Due 
to small fluctuations of the invar surface where the stripe is carved, the pixel equivalent is 
somewhat different in different sections. Therefore, the pixel equivalent of one section is not 
the best representation of the pixel equivalent of the whole rod. Pixel calibration along the 
whole rod improves the accuracy, but is very time-consuming.

Because the field of view is larger than the collection spacing, some of edges are collected 
by two adjacent images simultaneously. An edge that is collected by two images can be used 
to determine the pixel equivalent. The detected edge position in one image is D1 and in the 
adjacent image is D2, while the interferometer values are L1 and L2 , respectively. The detected 
edge position X does not change with the collection position. 

 
1 1 0 2 2 0( ) ( ) .X L D D k L D D k= + − × = + − ×   (2)

Then, 
 12 1 2( ) / ( ).k L L D D= − −   (3)
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This pixel calibration method requires only the collection space to be smaller than the 
field of view, and each stripe edge to be collected twice. Many edges that are collected twice 
can be used to determine the pixel equivalent by using the average of the calibration results. 
The average over the whole rod can greatly improve the accuracy. This method can accomplish 
self-calibration in the measurement process, making the measurement process more simple and 
convenient.

After pixel equivalent calibration, every stripe edge position on the rod can be obtained 
by (1). 

3. Vision measurement 

In the CCD camera, the pixel count is 1280 × 960 and the pixel size is 4.65 µm × 4.65 µm. 
The microscope magnification is approximately 1x. The size of the view field is approximately 
6 mm × 4.5 mm. There may be several edges in an image, as shown in Fig. 3a. To obtain every 
edge precisely, a special image processing method was designed. The process is as follows: 
ROI (regions of interest) extraction, local segmentation, outline following, plausibility check 
and edge localization. 

3.1. ROI extraction 

The general method of extracting the edges is dealing with the global image. The global 
method will not work well when faced with different edge properties or uneven illumination. 
The idea is to extract regions of interest (ROI) and make calculations only in those ROIs [17]. 
The precision and efficiency will be improved at the same time. 

As there may be several edges in an image, all the regions and properties (bright – dark or 
dark – bright transition) of every edge should be first determined. The ROIs are close to the 
edges along the column direction, so the column property is used to locate the regions. The 
average grey value of every column position x is I(x). 

A double threshold method was designed. The high threshold Th was set at 80% (the low one 
Tl – at 20%) of pixels in the magnitude histogram. Experimental results have shown that if the 
high threshold is lowered and the low threshold increased, the filter will be more sensitive to 
the grey-level variations. However, it will be also more sensitive to noise.

If Th and Tl are close enough, this means no edge exists in the image and no further 
processing is needed. 

If hTxI >− )( ε  and lTxI <+ )( ε , this means an edge located near x with bright – dark 
transition (left edge). 

If lTxI <− )( ε  and hTxI >+ )( ε , this means an edge located near x with dark – bright 
transition (right edge). 

The parameter e is related to the tilt of the CCD, which is intentional and can be determined. 
Then the ROIs are determined around x (near the edge position) with suitable widths.

3.2. Local segmentation 

After determination of the ROIs , image segmentation in these small regions can improve 
both accuracy and efficiency. We look at every region as a whole and use the global threshold 
in every ROI [22].

Let us consider that we have an image region with grey levels gand its normalized histogram 
(i.e., for each grey-level value i, p(i) is the normalized frequency).
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Assuming that we have set the threshold at T, the normalized fractions of pixels that will be 
classified as the background and object ones, will be:
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value, once the threshold is set to T.
Let us start from the beginning of the histogram and test each grey-level value for the 

possibility of being the threshold T that maximizes 2
Bσ  .

The result of local segmentation of Fig. 3a is shown in Fig. 3b. Every ROI is segmented 
using its own threshold, whereas other regions are untouched. After local segmentation, every 
edge is obvious.

a)             b)      c)

 Fig.3. ROI extraction and local segmentation: a) several edges in an image; b) local segmentation in ROI;
c) the detected stripe edges.

3.3. Outline tracing

Some of the edges have noise and faults, as shown in Fig. 5a. An outline tracing algorithm 
was designed to search the edge directly, avoiding the difficulty of noise removal. The outline 
tracing process is as follows.

Every binary ROI is scanned from the top to bottom, beginning from the left and right, 
respectively. The outline tracing of the left edge is shown in Fig. 4. From the left (white area) 
the scan stops when the first black pixel appears. The pixel position is recorded as m. From 
the right (black area) the scan stops when the first white pixel appears. The pixel position is 
recorded as n. If m ≠ n, the scan moves to the next row; if m = n, the pixel point must be the 
outline point, so the scan stops.

Such a point A must exist in the ROI, as shown in Fig. 4. After that, the outline is searched 
up from A and down from A, respectively. According to the outline continuity, the outline point 
of every row is traceable. When tracing down the outline, consecutive points are searched for, 
according to the priority: the left neighbor, the left neighbor below, the neighbor below, the right 
neighbor below, the right neighbor. However, a consecutive point does not indicate an outline 
point. For the left edge, if the left neighborhood of the consecutive point is disconnected, this 
point is the outline point. Otherwise, the search continues until the left neighbor of the point is 
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disconnected. In Fig. 4, tracing down from point A gets A→B1→C1 and tracing up from point 
A gets A→D1→E1. Thus, the consecutive outline points are E1→D1→A→B1→C1.

Fig. 4. The outline tracing graph.

The outline tracing result of Fig. 3b is shown in Fig. 3. The white outlines are the detected 
stripe edges. 

After ROI extraction, local segmentation and outline tracing, the result of Fig. 5a is shown in 
Fig. 5b. For the left edge, the dirt is eliminated by outline tracing. For the right edge, the edge 
fault is obvious and requires further processing.

3.4. Plausibility check 

The detected edges pass then through the plausibility check, to find dirt, scratches and 
defects. The method is as follows.

A line represented by the equation 0bybx +×=  is fitted to the stripe edge points using the 
least-squares regression, which minimizes the sum of the squares of perpendicular distances 
between the edge points and the line model. b and b0 are given by: 
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where: xi, yi stand for the pixel position of the edge in the image, n is the quantity of the pixel 
point.

The residual error and the standard deviation can be expressed as: 
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If σ3>iv , this means that an outlier exists and should be excluded from the edge data. 
The least-squares regression line is not the optimal result if there are some outliers present 

in the edge data. So, we continue using the least-squares regression and outlier judgment until 
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no outliers exist on the edge. If an edge has many outliers, the edge is a defective one and its 
position on the rod is reported. 

The processing result of Fig. 5b is shown in Fig. 5c. It is observed that the edge was acquired 
without dirt and defects. And the defective edge should be reported.

a)            b)     c)

Fig. 5. Outline tracing and the plausibility check: a) edges with noise and fault; b) after outline tracing; 
c) after the plausibility check.

3.5. Edge localization 

To improve the result, the CCD chip was intentionally tilted against the vertical direction 
of the rod movement by a well-calibrated amount to allow sub-pixel edge detection. If an 
irregular edge is regarded as a regular edge with a space disturbance, probability and statistics 
subdivision can be applied to improve the image resolution [18]. The implemented algorithms 
enable localization of contours with the accuracy of 1/10 of a pixel, i.e., less than 0.5 µm.

4. Experiment and results 

An overview of the calibration system is shown in Fig. 6. The measurement system was 
tested by the experts from China’s national metering bureau.

Fig. 6. An overview of the measurement system.

4.1. Vision measurement experiment 

The computer controlled the leveling rod, moving it in small distances. The same edge was 
measured several times at different image positions. At the first position, the interferometer was 
set to zero. At every subsequent position, the image and the interferometer data were collected. 
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The edge position in the image was obtained by the ROI method presented in Section 3. 
Comparing the image data with the interferometer data, the vision measurement precision can 
be determined. The measurement data is shown in Fig. 7a. There is a good linearity between the 
image data and the interferometer data. 

The real edge position was obtained by combining the image data with the interferometer 
data using (1). The result is shown in Fig. 7b. There is a good consistency for the same edge 
measured in different positions. The standard deviation is 0.42 μm.

The experiment proves that a combination of the image data with the interferometer data 
ensures the measurement accuracy. The experiment results also prove that the combination 
method is reliable, if only the detected edge exists in the field of view, so the control is easy to 
implement.

The experiment indicates that the image processing method reaches the sub-pixel precision. 
If the global method is used to obtain the edge position in the image, the standard deviation is 
0.9 μm. The precision is greatly improved with use of the ROI method. 

700 images of a 3 m rod were chosen to test the image processing speed. The global method 
took 270 seconds, while the ROI method took only 70 seconds under the same conditions. The 
efficiency is greatly improved with use of the ROI method.

         a)

        b)

Fig. 7. Measuring an edge at different positions: a) comparing the image data 
with the interferometer data; b) the data combination.
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4.2. Calibration of the Leveling Rod 

The rod scale and the graduation precision of a leveling rod were measured according to 
JJG8-1991 (national level rod metrological detection procedures) [19].

After installing the leveling rod and adjusting the equipment, calibration of the leveling rod 
began. The measurement process was accomplished automatically by the calibration system, 
needing no operator’s assistance. It took 28 minutes to measure back and forth for a 3 m rod. 
After the measurement, the result was obtained automatically, as shown in Table 1. Part of the 
stripe position error is shown in Fig. 8. 

Table 1. The measurement result of a rod.

Item Result

misclosure of round 1.9 μm

vision measurement precision 0.5 μm

rod graduation precision 2.0 μm

rod scale 1000.0031 mm

Fig. 8. Part of the stripe position error.

The misclosure of the round is 1.9 µm, which shows a good stability of the measurement 
system. The standard deviation of stripe width between the forward and backward measurements 
is 0.5 μm, which shows a good consistency of the measurement system. Because of the stability 
and consistency of the measurement system, the rod result (graduation precision and rod scale) 
is reliable. 

The detected rod is a high precision Topcon rod made in Japan. The measurement result 
of the rod is consistent with the given value. This indicates that the detection system is very 
precise and can meet the measurement requirements for high precision rods.

Some rods made by Chinese manufacturers were tested. The defective edges were 
found in a timely manner before these rods went into market. These rods require further 
testing after repairing their defective edges. The system provides quality assurance for the 
manufacturers.
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5. Conclusions 

An automatic calibration system for stripe leveling rods was designed and presented in 
this paper. The system configuration, the automatic calibration principle, and the vision 
measurement method were described in detail. The stripe rod was driven by a closed-loop 
control and the data were collected in the stop state. A laser interferometer was used not only to 
determine the length, but also as a positioning sensor. The stripe edge position was obtained by 
combining the image data with the interferometer data. The data combination method reduces 
control difficulty and ensures the measurement accuracy.

The measurement system was tested by the experts from China’s national metering bureau.
The standard deviation of vision measurement is less than 0.5 μm. The overall precision of 

the system is better than 3 μm. The system can measure the highest precision stripe rods. It 
takes only 28 minutes to measure a 3 m rod, so it can be used for batch calibration. It can detect 
defective edges, providing quality assurance for manufacturers. The system currently works 
well in several survey agencies and rod manufacturers in China.
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