PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An active fault-tolerant control framework against actuator stuck failures under input saturations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a control framework including active fault-tolerant control (FTC) and reference redesign is developed subject to actuator stuck failures under input saturations. FTC synthesis and reference redesign approaches are proposed to guarantee post-fault system safety and reference reachability. Then, these features are analyzed under both actuator stuck failures and constraints before fault-tolerant controller switches. As the main contribution, actuator stuck failures and constraints are unified so that they can be easily considered simultaneously. By means of transforming stuck failures into actuator constraints, the post-fault system can be regarded as an equivalent system with only asymmetrical actuator constraints. Thus, methods against actuator saturations can be used to guarantee regional stability and produce the stability region. Based on this region, stuck compensation is analyzed. Specifically, an unstable open-loop system is considered, which is more challenging. Furthermore, the method is extended to a set-point tracking problem where the reachability of the original reference can be evaluated. Then, a new optimal reference will be computed for the post-fault system if the original one is unreachable. Finally, simulation examples are shown to illustrate the theoretical results.
Rocznik
Strony
749--761
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, PR China
autor
  • CRAN UMR 7039, CNRS, University of Lorraine, BP 70239, 54506 Vandoeuvre-les-Nancy, France
autor
  • State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, PR China
autor
  • State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, PR China
Bibliografia
  • [1] Benhayoun, M., Benzaouia, A., Mesquine, F. and Hajjaji, A.E. (2013). System stabilization by unsymmetrical saturated state feedback control, 9th Asian Control Conference (ASCC), Istanbul, Turkey, pp. 1–5.
  • [2] Cen, Z., Noura, H. and Younes, Y.A. (2015). Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs, International Journal of Applied Mathematics and Computer Science 25(1): 159–147, DOI: 10.1515/amcs-2015-0012.
  • [3] Chen, J. and Patton, R.J. (2012). Robust Model-based Fault Diagnosis for Dynamic Systems, Vol. 3, Springer, Boston, MA.
  • [4] da Silva, J.M.G. and Tarbouriech, S. (2005). Antiwindup design with guaranteed regions of stability: An LMI-based approach, IEEE Transactions on Automatic Control 50(1): 106–111.
  • [5] Dardinier-Maron, V., Hamelin, F. and Noura, H. (1999). A fault-tolerant control design against major actuator failures: Application to a three-tank system, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, Vol. 4, pp. 3569–3574.
  • [6] Famularo, D., Franz, G. and Lucia, W. (2015). Multiple stuck positions actuator faults: A model predictive based reconfigurable control scheme, IEEE Conference on Decision and Control, Osaka, Japan pp. 5091–5096.
  • [7] Hu, T., Lin, Z. and Chen, B. M. (2002). An analysis and design method for linear systems subject to actuator saturation and disturbance, Automatica 38(2): 351–359.
  • [8] Jiang, B. and Chowdhury, F.N. (2005). Fault estimation and accommodation for linear MIMO discrete-time systems, IEEE Transactions on Control Systems Technology 13(3): 493–499.
  • [9] Jiang, B., Staroswiecki, M. and Cocquempot, V. (2006). Fault accommodation for nonlinear dynamic systems, IEEE Transactions on Automatic Control 51(9): 1578–1583.
  • [10] Li, Y. and Lin, Z. (2013). Design of saturation-based switching anti-windup gains for the enlargement of the domain of attraction, IEEE Transactions on Automatic Control 58(7): 1810–1816.
  • [11] Noura, H., Theilliol, D., Ponsart, J. and Chamseddine, A. (2009). Fault-tolerant Control Systems: Design and Practical Applications, Advances in Industrial Control, Springer, Berlin/Heidelberg.
  • [12] Ossmann, D. and Varga, A. (2015). Detection and identification of loss of efficiency faults of flight actuators, International Journal of Applied Mathematics and Computer Science 25(1): 53–63, DOI: 10.1515/amcs-2015-0004.
  • [13] Pascal, G. and Pierre, A. (1994). A linear matrix inequality approach to H∞ control, International Journal of Robust and Nonlinear Control 4(4): 421–448.
  • [14] Qi, X., Qi, J., Theilliol, D., Zhang D., Han, J. and Song, D. (2014). A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles, Journal of Intelligent & Robotic Systems 73(1–4): 535–555.
  • [15] Tabatabaeipour, S.M. and Blanke, M. (2014). Calculation of critical fault recovery time for nonlinear systems based on region of attraction analysis, World Congress of the International Federation of Automatic Control, Cape Town, South Africa, pp. 6741–6746.
  • [16] Theilliol, D., Join, D. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553–560, DOI: 10.2478/v10006-008-0048-1.
  • [17] Wu, F. and Soto, M. (2003). Extended LTI anti-windup control with actuator magnitude and rate saturations, 42nd IEEE Conference on Decision and Control, Maui, HI, USA, Vol. 3, pp. 2786–2791.
  • [18] Wu, L.B., Yang, G.H. and Ye, D. (2014). Robust adaptive fault-tolerant control for linear systems with actuator failures and mismatched parameter uncertainties, IET Control Theory & Applications 8(6): 441–449.
  • [19] Xu, D., Jiang, B. and Shi, P. (2015). Robust NSV fault-tolerant control system design against actuator faults and control surface damage under actuator dynamics, IEEE Transactions on Industrial Electronics 62(9): 5919–5928.
  • [20] Xu, F., Puig, V., Ocampo-Martinez, C., Olaru, S. and Niculescu, S.-I. (2017). Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation, International Journal of Applied Mathematics and Computer Science 27(1): 43–61, DOI: 10.1515/amcs-2017-0004.
  • [21] Yang, G.H., Wang, H. and Xie, L. (2010). Fault detection for output feedback control systems with actuator stuck faults: A steady-state-based approach, International Journal of Robust and Nonlinear Control 20(15): 1739–1757.
  • [22] Zhang, Y. and Jiang, J. (2003). Fault tolerant control system design with explicit consideration of performance degradation, IEEE Transactions on Aerospace and Electronic Systems 39(3): 838–848.
  • [23] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229–252.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c4bec5d-480e-4555-ae68-ff3b335c3922
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.