PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The accurate algorithm of new surface area of single particle comminution, incorporating particle shape and roughness

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy efficiency can be obtained by measuring accurate new surface energy in the crushing process. For the calculation of new surface energy, most researchers only pay attention to particle size distribution and ignore the influence of particle shape and roughness on the surface area. In this paper, the image processing technology was used to calculate the shape parameters and surface fractal dimension of the crushed granite sample. According to the different combinations of particle shape and roughness, the new surface area corresponding to the four basic models was calculated. For the surface area of a single particle, the calculation result of the rough model considering the surface fractal dimension is higher than that of the smooth model. Moreover, the ratio of the calculation results of the rough model and the smooth model increases significantly as the particle size increases. For 0.1 mm particles, the area ratio of the two models is 8, but for 25 mm particles, the area ratio reaches 130. In contrast, the particle shape is a secondary factor that affects the surface area calculation. The ellipsoidal model considering the particle shape has a surface area 30% larger than the spherical model. If the roughness and particle shape are considered when calculating the surface area, the energy efficiency of crushing is higher.
Rocznik
Strony
259--272
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • China University of Mining and Technology Beijing, School of Chemical and Environmental Engineering, Beijing
autor
  • China University of Mining and Technology Beijing, School of Chemical and Environmental Engineering, Beijing
autor
  • China University of Mining and Technology Beijing, School of Chemical and Environmental Engineering, Beijing
  • Shenhua Ningxia Coal Industry Group CO., LTD Taixi CPP, China
autor
  • Shenhua Ningxia Coal Industry Group CO., LTD Taixi CPP, China
Bibliografia
  • BROWN, D. J., 1985. Direct measurement of concentration and size for particles of different shapes using laser light diffraction. Chem.eng.res.des 63, 125-132.
  • CALVIMONTES, A., 2017. The measurement of the surface energy of solids using a laboratory drop tower. Npj Microgravity 3
  • CHEN, X., WANG, S. Z. ,LI, L., 2012. Characcterstics of fragments of jointed rock mass model under uniaxial compression. Chinese Journal of Rock Mechanics and Engineering 31, 898-907.
  • GE, Y. F., KULATILAKE, P. H. S. W., TANG, H. M. ,XIONG, C. R., 2014. Investigation of natural rock joint roughness. Computers and Geotechnics 55, 290-305.
  • GIORGIO, F. ,DANIELE, R., 2007. SCATTERING, NATURAL SURFACES, AND FRACTALS. London, Academic Press.
  • HAUSDORFF, F., 1918. Dimension und äußeres Maß. Mathematische Annalen 79, 157-179.
  • HEYWOOD, H., 1947. Symposium on particle size analysis. Trans. Inst. Chern. Eng, 14.
  • HOU, T. X., XU, Q., XIE, H. Q., XU, N. W. ,ZHOU, J. W., 2017. An estimation model for the fragmentation properties of brittle rock block due to the impacts against an obstruction. Journal of Mountain Science 14, 1161–1173.
  • JI, T., HU, C. B. ,LI, X. J., 2009. Simplified calculation method of specific surface area of coarse aggregate based on fractal theory. Concrete, 27-28.
  • JIANG, H. X., DU, C. L. ,LIU, S. Y., 2013. The effects of impact velocity on energy and size distribution of rock crushing. JOURNAL OF CHINA COAL SOCIETY 38, 604-609.
  • LEE, Y. H., CARR, J. R., BARR, D. J. ,HAAS, C. J., 1990. The fractal dimension as a measure of the roughness of rock discontinuity profiles. International Journal of Rock Mechanics Mining Sciences & Geomechanics Abstracts 27, 453-464.
  • LI, D. J., JIA, X. N., MIAO, J. L., HE, M. C. ,LI, D. D., 2010. Analysis of fractal characteristics of fragment from rockburst test of granite. Chinese Journal of Rock Mechanics and Engineering 29, 3280-3289.
  • LI, G. B., CHEN, Q. S. ,XU, X. H., 1997. Fractal in Rock Fracture. BeiJing, Seismological Press.
  • LI, G. Q. ,DENG, X. J., 1995. Fractal effect of graded aggregate. Concrete 1, 3~7.
  • LI, L. Y., JU, Y., ZHAO, Z. W., WANG, L., LU, J. ,MA, X., 2009. Energy analysis of rock structure under static and dyanmic loading conditions. JOURNAL OF CHINA COAL SOCIETY 34, 737-740.
  • LI, R. Z., LU, W. B., YIN, Y. J., YU, Y. J., CHEN, M., XIA, W. J. ,YAN, P., 2019. Study on the shape and specific surface area characteristics of blasting gravel particles of limestone in Hangudi quarry of Baihetan. Chinese Journal of Rock Mechanics and Engineering 38, 1344-1354.
  • LI, Y. R. ,HUANG, R. Q., 2015. Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces. International Journal of Rock Mechanics Mining Sciences 75, 15-22.
  • LIN, M. Q., ZHANG, L., LIU, X. Q., XIA, Y. Y., HE, J. Q. ,KE, X. S., 2020. The Meso-Analysis of the Rock-Burst Debris of Rock Similar Material Based on SEM. Advances in Civil Engineering 2020, 1~13.
  • LIU, G., ZHAO, M. Z., LU, R., LUO, Q. ,LU, C., 2019. Morphology characteristics of gravel particle and its relationship with stacking void ratio. Rock and Soil Mechanics 40, 4644-4651.
  • MANDELBROT, B. B., 1975. Stochastic models for the Earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proceedings of the National Academy of Ences of the United States of America 72, 3825-3828.
  • MANDELBROT, B. B., PASSOJA, D. E. ,PAULLAY, A. J., 1984. Fractal character of fracture surfaces of metals. Nature 308, 721-722.
  • PEN, L. M. L., POWRIE, W., ZERVOS, A., AHMED, S. ,AINGARAN, S., 2013. Dependence of shape on particle size for a crushed rock railway ballast. Granular Matter 15, 849-861.
  • RAJAN, B. ,SINGH, D., 2018. Investigation on effects of different crushing stages on morphology of coarse and fine aggregates. International Journal of Pavement Engineering 21, 177-195.
  • RUSSELL, A. R. ,EINAV, I., 2013. Energy dissipation from particulate systems undergoing a single particle crushing event. Granular Matter 15, 299-314.
  • SAUERER, B., STUKAN, M., ABDALLAH, W., DERKANI, M. H., FEDOROV, M., BUITING, J. ,ZHANG, Z. J., 2016. Quantifying mineral surface energy by scanning force microscopy. Journal of Colloid Interface Science 472, 237-246.
  • SINGH, P. ,RAMAKRISHNAN, P., 1996. Powder Characterization by Particle Shape Assessment. KONA 14, 16-30.
  • SUDARSHAN, M., 2016. Size–energy relationship in comminution, incorporating scaling laws and heat. International Journal of Mineral Processing 153, 29-43.
  • VAN OSS, C. J., GOOD, R. J. ,CHAUDHURY, M. K., 1988. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4, 884-891.
  • WADELL, H., 1932. Volume, Shape, and Roundness of Rock Particles. The Journal of Geology, 443-451.
  • WANG, C. H., CHENG, Y. P., YI, M. H., HU, B. ,JIANG, Z. N., 2020. Surface energy of coal particles under quasi-static compression and dynamic impact based on fractal theory. Fuel 264, 1-12.
  • WANG, P. ,ARSON, C., 2018. Energy distribution during the quasi-static confined comminution of granular materials. Acta Geotechnica 13, 1-9.
  • XIE, H. P., 1996. Fractal: An Introduction to Rock Mechanics. BeiJing, Science Press.
  • XIE, Y. J., WANG, X. H., HU, X. Z. ,ZHU, X. Z., 2015. Fracture-based model of periodic-arrayed indentation for rock cutting. International Journal of Rock Mechanics Mining Sciences 76, 217-221.
  • XU, Y. F. ,SUN, D. A., 2005. Correlation of surface fractal dimension with frictional angle at critical state of sands. Geotechnique 55, 691-695.
  • YANRONG, L. ,RUNQIU, H., 2015. Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces. International Journal of Rock Mechanics Mining Sciences 75, 15-22.
  • ZHANG, C. S., NGUYEN, G. D. ,KODIKARA, J., 2016. An application of breakage mechanics for predicting energy–size reduction relationships in comminution. Powder technology 287, 121–130.
  • ZHOU, H. W. ,XIE, H. P., 2003. Direct Estimation of the Fractal Dimensions of a Fracture Surface of Rock. Surface Review Letters 10, 751-762.
  • ZHUANG, Y. H., ZHOU, H. W. ,XIE, H. P., 2005. Improved cubic covering method for fractal dimensions of a fracture surface of rock. Chinese Journal of Rock Mechanics and Engineering 24, 3192-3196.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c4b1d62-d3c5-49bc-9d63-7aa7a9491600
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.