PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural characteristics of artificial ice in winter sports rinks: experimental study and nondestructive prediction based on surface hardness method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interest in the construction of prefabricated ice rink for international competition has increased in recent years, where the ice sheet is directly supported by soft thermal insulation materials. However, bending failure in the ice sheets for these rinks is highly possible because of different compression and tension behaviors. Moreover, the mechanical behaviors of the artificial ice produced layer-by-layer in rinks remain unclear. Therefore, microstructure observations, hardness tests, and three-point bending tests were conducted in this study to better understand artificial ice. First, the crystal structures were obtained through observations in both the vertical and horizontal directions. Then, the hardness of the ice surface at different temperatures, water qualities, ice-making methods, and surrounding environmental conditions was measured using the Shore hardness apparatus. Finally, systematic three-point bending tests on 80 effective ice specimens under a wide range of loading and ice-making parameters were performed. The results show that artificial ice is a typical kind of columnar ice with smaller grain sizes at lower surfaces. The ice surface hardness, roughly normally distributed, was mainly affected by temperature and ice-making mode. Moreover, it was found that all the test ice beam exhibited brittle fracture, and the flexural strength ranged from 0.84 to 2.47 MPa, with the maximum average at a strain rate of 1× 10-4 s-1 . Based on these test results, empirical functions for the effects of the investigated parameters on the flexural strength and effective modulus were developed. Also, the relationships between flexural and tensile strength for artificial ice were established using Weibull law and the coupled criterion. In addition, the linear regression model was established and verified using different prediction methods to predict the ice flexural behavior in practical rinks based on the measured hardness in a simple, reliable, and nondestructive way. The current experiment and analysis are beneficial for the design, operation and maintenance of prefabricated ice rinks.
Rocznik
Strony
art. no. e67, 1--19
Opis fizyczny
Bibliogr. 61 poz., il., tab., wykr.
Twórcy
  • Harbin Institute of Technology, Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin, China
  • Harbin Institute of Technology, Lab of Smart Prevention and Mitigation of Civil Engineering Disasters, Ministry of Industry and Information Technology, China
autor
  • Harbin Institute of Technology, Harbin, China
autor
  • Harbin Institute of Technology, Harbin, China
  • Harbin Institute of Technology, Harbin, China
autor
  • Beijing National Aquatics Center Co. Ltd., Beijing, China
Bibliografia
  • 1. Palmowska A, Lipska B. Experimental study and numerical prediction of thermal and humidity conditions in the ventilated ice rink arena. Build Environ. 2016;108:171-182.
  • 2. Zhou WJ, Gan ZH, Han L. Simulation of the optimal refrigerated floor design for ice rinks. Energies. 2021;14(6):1535.
  • 3. Li L, Liu X, Zhang T. Investigation of heat and mass transfer characteristics in the ice rink: ice making, maintaining and resurfacing processes. Build Environ. 2021;196(14-15):107779.
  • 4. Lin Q, Deming L. Design towards the conversion between land sports and ice sports in infield space of arena. IOP Conf Ser: Mater Sci Eng. 2019;780:052023.
  • 5. Zhang WY, Li JX, Yang QY, Mu L. Practical application of a novel prefabricated curling ice rink supported by steel-concrete composite floors: In situ measurements of static and dynamic response. Structures. 2021;32:1888-1906.
  • 6. Wei B. Theoretical analysis and finite element simulation of the mechanical performance of artificial ice rink. School of Civil and Engineering, Harbin Institute of Technology; 2020. (in Chinese).
  • 7. ASHRAE. ASHRAE handbook - refrigeration. SI. Atlanta: ASHRAE; 2018.
  • 8. Braghin F, Cheli F, Maldi S, Melzi S, Sabbioni E. The engineering approach to winter sports. 1st ed. New York: Springer; 2016.
  • 9. Li JX, Zhang WY, Yang QY. Performance of a novel prefabricated curling ice rink: human locomotion load measurement and FE simulation analysis. KSCE J Civ Eng. 2021;25:4799-813.
  • 10. Poirier L, Lozowski EP, Thompson RI. Ice hardness in winter sports. Cold Reg Sci Technol. 2011;67(3):129-134.
  • 11. Kobayashi T, Kitahara T. Studies on the properties of ice in skating rinks Low Temperature Science. Ser.A. Phys Sci. 1969;26:297-314.
  • 12. Wang Y, Chen G, Wan B, Lin H. Axial compressive behavior of square ice filled steel tubular stub columns. Constr Build Mater. 2018;188:198-209.
  • 13. Wang Y, Chen G, Wan B, Cai G, Zhang Y. Behavior of circular ice-filled self-luminous FRP tubular stub columns under axial compression. Constr Build Mater. 2020;232:117287.
  • 14. Qiu W, Peng R. Research on the numerical simulation for plastic model of ice as building materials under triaxial compression. Constr Build Mater. 2021;268:121183.
  • 15. Wu Y, Lou XN, Liu XM, Pronk A. The property of fiber reinforced ice under uniaxial compression. Mater Struct. 2020;53:29.
  • 16. Lu W, Lubbad R, Loset S. Out-of-plane failure of an ice foe: radial-crack-initiation-controlled fracture. Cold Reg Sci Technol. 2015;119:183-203.
  • 17. Ji S, Wang A, Su J, Yue Q. Experimental studies on elastic modulus and flexural strength of sea ice in the Bohai Sea. J Cold Reg Eng. 2011;25(4):182-195.
  • 18. Masterson DM. State of the art of ice bearing capacity and ice construction. Cold Reg Sci Technol. 2009;58(3):99-112.
  • 19. Han H, Jia Q, Huang W, Li Z. Flexural strength and effective modulus of large columnar-grained freshwater ice. J Cold Reg Eng. 2016;30(2):04015005.
  • 20. White G, McCallum A. Review of ice and snow runway pavements. Int J Pavement Res Technol. 2018;11(3):311-320.
  • 21. Charlebois L, Barrette P. Ice reinforcement: selection criteria for winter road applications and outcomes of preliminary testing. In: Jean-Pascal B, Daniel FN, Daniel F, David C, editors. Cold regions engineering 2019. Reston: ASCE; 2019. p. 119-127.
  • 22. Gagnon RE, Gammon PH. Characterization and flexural strength of iceberg and glacier ice. J Glaciol. 1995;41(137):103-111.
  • 23. Timco GW, Weeks WF. A review of the engineering properties of sea ice. Cold Reg Sci Technol. 2010;60(2):107-129.
  • 24. Parsons BL, Lal M, Williams FM. The influence of beam size on the flexural strength of sea ice, freshwater ice and iceberg ice. Philos Mag A. 1992;66(6):1017-1036.
  • 25. Jordaan IJ. Decisions under uncertainty: Probabilistic analysis for engineering decisions. 1st ed. New York: Cambridge University Press; 2005.
  • 26. Timco GW, Brien SO. Flexural strength equation for sea ice. Cold Reg Sci Technol. 1994;22(3):285-298.
  • 27. Aly M, Taylor RS, Bailey E. Scale effect in ice flexural strength. J Ofshore Mech Arct. 2018;141(5):051501.
  • 28. Schwarz J, Frederking R, Gavrillo V. Standardized testing methods for measuring mechanical properties of ice. Cold Reg Sci Technol. 1981;4(3):245-253. 29.
  • Cole D. Strain-rate and grain-size effects in ice. J Glaciol. 1987;33(115):274-280.
  • 30. Gribanov I, Taylor R, Sarracino R. Cohesive zone micromechanical model for compressive and tensile failure of polycrystalline ice. Eng Fract Mech. 2018;196:142-156.
  • 31. Karulina M, Marchenko A, Karulin E, Sodhid D, Sakharove A, Chistyakove P. Full-scale flexural strength of sea ice and fresh water ice in Spitsbergen fords and north-west Barents sea. Appl Ocean Res. 2019;90:101853.
  • 32. Cole DM. The microstructure of ice and its influence on mechanical properties. Eng Fract Mech. 2001;68(17-18):1797-1822.
  • 33. Lee RW, Schulson EM. The strength and ductility of ice under tension. J Off shore Mech Arct Eng. 1988;110(2):187.
  • 34. Deng Y, Li ZK, Li ZJ, Wang J. The experiment of fracture mechanics characteristics of yellow river ice. Cold Reg Sci Technol. 2019;168:102896.
  • 35. Zhang YD, Li ZJ, Xiu YR. Microstructural characteristics of frazil particles and the physical properties of frazil ice in the yellow river, China. Curr Comput-Aided Drug Des. 2021;11(6):617.
  • 36. Iliescu D, Baker I. The structure and mechanical properties of river and lake ice. Cold Reg Sci Technol. 2007;48(3):202-217.
  • 37. Zhang Y, Wang Q, Han D, Xue Y, Yao H. Experimental study of the quasi-static and dynamic fracture toughness of freshwater ice using notched semi-circular bend method. Eng Fract Mech. 2021;247:107696.
  • 38. Li D, Du F. Monitoring and evaluating the failure behavior of ice structure using the acoustic emission technique. Cold Reg Sci Technol. 2016;129:51-59.
  • 39. Datt P, Chandel C, Kumar V, Sheoran R. Analysis of acoustic emission characteristics of ice under three-point bending. Cold Reg Sci Technol. 2020;174:103063.
  • 40. Pernas-Sánchez J, Pedroche DA, Varas D. Numerical modeling of ice behavior under high velocity impacts. Int J Solids Struct. 2012;49(14):1919-1927.
  • 41. Duddu R, Waisman H. A temperature dependent creep damage model for polycrystalline ice. Mech Mater. 2012;46:23-41.
  • 42. Londono JG, Berger-Vergiat L, Waisman H. A prony-series type viscoelastic solid coupled with a continuum damage law for polar ice modeling. Mech Mater. 2016;98:81-97. 43. Barrette PD. A laboratory study on the flexural strength of white ice and clear ice from the Rideau Canal skateway. Can J Civil Eng. 2011;38(12):1435-9.
  • 44. Kermani M, Farzaneh M, Gagnon R. Bending strength and effective modulus of atmospheric ice. Cold Reg Sci Technol. 2008;53(2):162-9.
  • 45. Dempsey JP, Wei Y, DeFranco S. Fracture toughness of S2 columnar freshwater ice: crack length and specimen size effects Part1. In: The Eighth International Conference on of shore mechanics and arctic engineering. ASME, New York, 1989; p. 83-89.
  • 46. Murdza A, Schulson EM, Renshaw CE. Strengthening of columnar-grained freshwater ice through cyclic flexural loading. J Glaciol. 2020;66(258):556-566.
  • 47. Aksenov VI, Gevorkyan SG, Iospa AV. Temperature dependence of stress-strain properties of freshwater ice. Soil Mech Found Eng. 2019;56(5):366-370.
  • 48. Li ZJ, Zhang LM, Lu P. Experimental study on the effect of porosity on the uniaxial compressive strength of sea ice in Bohai sea. Sci China Technol Sci. 2011;54:2429-36.
  • 49. Jones D, Ashby M. Engineering materials 1: an introduction to properties, applications and design. 5th ed. Amsterdam: Elsevier; 2019.
  • 50. Leguillon D, Martin E, Lafarie-Frenot MC. Flexural vs. tensile strength in brittle materials. Cr Mecanique. 2015;343(4):275-281.
  • 51. Doitrand A, Henry R, Lube T, Meille S. Size effect assessment by Weibull’s approach and the coupled criterion. Eng Fract Mech. 2021;256:107979.
  • 52. Laws V. The relationship between tensile and bending properties of non-linear composite materials. J Mater Sci. 1982;17(10):2919-24.
  • 53. Leguillon D. Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A Solids. 2002;21:61-72.
  • 54. Doitrand A, Henry R, Meille S. Brittle material strength and fracture toughness estimation from four-point bending test. J Appl Comput Mech. 2021;2021:1-17.
  • 55. Ince ST, Kumar A, Paik JK. A new constitutive equation on ice materials. Ships Offshore Struct. 2017;12(5):610-623. 56. Zhang P, Li SX, Zhang ZF, et al. General relationship between strength and hardness. Mat Sci Eng A-Struct. 2011;529:62-73.
  • 57. Aoki H, Matsukura Y. Estimating the unconfined compressive strength of intact rocks from Equotip hardness. B Eng Geol Environ. 2008;67(1):23-29.
  • 58. Kaufmann E, Attree N, Bradwell T, Hagermann A. Hardness and yield strength of CO2 ice under Martian temperature conditions. J Geophys Res Planet. 2020;125(3):e2019JE006217.
  • 59. Henderson BL, Gudipati MS, Bateman FB. Leeb hardness of salty Europa ice analogs exposed to high-energy electrons. Icarus. 2019;322:114-120.
  • 60. Johnson KL. Contact mechanics. 1st ed. Cambridge: Cambridge University Press; 1987.
  • 61. Ortiz R, Deletombe E, Chuzel-Marmot Y. Assessment of damage model and strain rate effects on the fragile stress/strain response of ice material. Int J Impact Eng. 2015;76:126-138.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c485220-ff82-418e-ac95-169470872296
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.