PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A system for precise laser beam angular steering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A system for precise angular laser beam deflection by using a plane mirror is presented. The mirror was fixed to two supports attached to its edges. This article details the theoretical basis of how this deflector works. The spring deflection of a flat circular metal plate under a uniform axial buckling was used and the mechanical stress was generated by a piezoelectric layer. The characteristics of the deformation of the plate versus the voltage control of the piezoelectrics were examined and the value of the change resolution possible to obtain was estimated. An experimental system is presented and an experiment performed to examine this system. As a result, a resolution of displacement of 10-8 rad and a range of 10-5 rad were obtained.
Rocznik
Strony
27--36
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering sw. A. Boboli 8 St., 02-525 Warsaw, Poland
Bibliografia
  • [1] International Standard EN ISO 11670 (2003). Lasers and laser-related equipment -Test methods for laser beam parameters - Beam positional stability.
  • [2] Chen, J. S., Kou, T. W., Chiou, S. H. (1999). Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer., Precision Engineering, 23, 243-252.
  • [3] Senderáková, D., Štrba, A. (2003). Analysis of a wedge prism to perform small-angle beam deviation. Proceedings of SPIE, 5036,148-151.
  • [4] Gray, J., Thomas, P., and Zhu, X.D. (2001). Laser pointing stability measured by an oblique-incidence optical transmittance difference technique. Review Of Scientific Instruments, 72, 9, 3714-3717.
  • [5] Buske, I., Schragner, R., Riede, W. (2007). A real-time sub-μrad laser beam tracking system. Proceedings of SPIE, 6738 67380F-1-9.
  • [6] Zhu, Y., Liu, W., Jia, K., Liao, W., Xie, H. (2011). A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift. Sensors and Actuators, A 167, 495-501.
  • [7] Yin, Y., Ye, H., Zhan, W., Hong, L., Ma, H., Xu, J. (2011). Preparation and characterization of unimorph actuators based on piezoelectric Pb(Zr0.52Ti0.48)O3 materials. Sensors and Actuators, A 171, 332-339.
  • [8] Germann, L., Braccio, J. (1990). Fine-steering mirror technology supports 10 nanoradian systems. Optical Engineering, 29, 11, 1351-1359.
  • [9] Rijnvelda, N., Henselmansa, R., Nijlanda, B. (2011). A tip/tilt mirror with large dynamic range for the ESO VLT Four Laser Guide Star Facility. Proceedings of SPIE, 8125 812503-1.
  • [10] Tapos, F.M., Edinger, D.J., Hilby, T.R., Ni, M.S., Holmes, B.C., Stubbs, D. M., (2005). High bandwidth fast steering mirror. Proceedings of SPIE 2881, 65-74.
  • [11] Gustafson, S.C., Little, G.R., Bright, V.M., Comtois, J.H., Watson, E.S. (1996). Micromirror arrays for coherent beam steering and phase control. Proceedings of SPIE, 587707-1.
  • [12] Wang, J., Hao, Q., Song, Y., Hu, Y. (2011). Novel MOEMS-based beam steering method. Proceedings of SPIE, 8197, 81971D-1-8.
  • [13] Kim, J., C. Oh, Escuti, M, J, Hosting, L., Serati, S. (2008). Wide-angle, nonmechanical beam steering using thin liquid crystal polarization gratings. Proceedings of SPIE, 7093, 709302-1-12.
  • [14] Niezgodziński, M.E., Niezgodziński, T. (2002). Exercises with strength of materials WNT, 200.
  • [15] Changhai, R., Lining, S. (2005). Hysteresis and creep compensation for piezoelectric actuator in open-loop operation. Sensors and Actuators, A 122, 124-130.
  • [16] Patent application no.P-397925.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c475bbd-c144-4c71-8c23-a02e9de0e6ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.