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In this paper the challenges in building good search engines are discussed. Many
of the search engines use well-known information retrieval algorithms and tech-
niques. They use Web crawlers to maintain their index databases amortizing the cost
of crawling and indexing over the millions of queries received by them. Web crawl-
ers are programs that exploit the graph structure of the Web to move from page to
page. Paper analyses the PageRank algorithm one of these Web crawlers. The results
of the impact of the PageRank parameter value on the effectiveness of determining
the so-called PageRank vector are considered in the paper. Investigations are illus-
trated by means of the results of a some simulation experiments to analyze the Pag-
eRank algorithm efficiency for different density graph (representing analyzed part of
www) coefficient values.
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1. Introduction

One of the most popular services offered by modern Internet is www. Access
to the Web resources is implemented mostly through search engines , whose func-
tionality is growing. Users of the search engine form queries resulting in a list of
websites containing the following keywords. Most of the search engines uses fa-
miliar, traditional algorithms and information retrieval techniques developed for
searching a relatively small and thematically coherent collection, such as catalogs
of books in the library. These methods are not effective enough for the needs of



Web search, which is a huge, much less consistent, very often changing its content
and structure, and is spread over geographically distributed computers. For the
purpose of searching the Internet is therefore required to improve the traditional in-
formation retrieval techniques or develop new ones. The research carried out in or-
der to estimate the size of modern Internet shows that it consists of over one billion
pages. Given that the average web page size is approximately 5-10 kilobytes size of
the Internet can be estimated at tens of terabytes. The Internet is characterized by a
very high dynamics of change in its size and structure. The research conducted by
Lawrence and Giles [10] shows that the size of the Web has doubled in the last two
years. Large is the dynamics of Internet content . In addition to the newly created
pages, existing pages are constantly updated. Research carried out by Cho and Gar-
cia -Molina [4 | shows that about 23% of all the pages available on the Web is up-
dated daily. Knowledge of the structure and size of the Internet and development of
methods for Internet structure modeling is a number of ongoing studies [4].

There are two main reasons why the traditional information retrieval tech-
niques may not be sufficiently effective in the exploration of the modern Internet.
The first reason stems from the mentioned above very large size of the Internet and
the very large dynamic changes in its structure and content. The second reason has
to do with the existence of multiple systems describing the contents of individual
Web pages, which can significantly impede analysis of their contents. A qualitative
change in the efficiency of search algorithms on the Web was the result of the use
of the results in their design analysis of the structure of links in the network. In par-
ticular, a link from page A to page B can be considered as a recommendation of the
page B by the author of the page A. In recent years some new algorithms have been
proposed based on the knowledge of the structure of Internet links. Practice shows
that the effect of information retrieval algorithms of this class gives qualitatively
better results than the results of the algorithms that implement the traditional meth-
ods and techniques of information retrieval.

Internet search engines use a variety of algorithms to sort Web pages based on
their text content or on the hyperlink structure of the Web. This paper describes al-
gorithms that use the hyperlink structure, called link-based algorithms: PageRank
[12] and HITS [8]. The basic notion for these algorithms is the Web graph, which
is a digraph with a node for each Web page and an arc between pages i and j if
there is a hyperlink from page 7 to page j. Given a collection of Web pages linking
to each other, the HITS and PageRank algorithms construct a matrix capturing the
Web hyperlink structure and compute a measures of pages popularity (ranks) using
linear algebra methods.
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2. The PageRank algorithm

In well-known study Brin and Page [3] have proposed an algorithm for de-
termining the ranking of Web pages called PageRank , which uses the term "weight
of page". According to this proposal the weight of page depends on the number of
others Web pages that point to it. The value of the weight can be used to rank the
results of the query. This page rank, however, would be little resistance to a phe-
nomenon known as spam, because it is quite easy to artificially create multiple
pages pointing to the page [1]. To counteract such practices PageRank algorithm
extends the basic idea of citations, taking into account the importance of each page
that point to the analyzed page. This means that the definition of page weights
(PageRank) is cyclic: the importance of page depends on the weight of pages point-
ing to it and at the same time affect the validity of the pages to which she points.
Web model proposed in the work of Brin and Page [3 ] uses the link structure of
Web site to the construction of a Markov chain with transition matrix P, whose el-
ements are the probabilities pij of random events such that the user of page i indi-
cates a link to the page j. The irreducibility of the chain guarantees that the long-
run stationary vector r, known as the PageRank vector, exists. Mathematically, we
can think of this network as a graph, where each page is a vertex, and a link from
one page to another is a graph edge. In the language of PageRank, vertices are
nodes (Web pages), the edges from a node are forward links, and the edges into
a node are backlinks.

2.1. The idea of PageRank model

We first present a simple definition of PageRank that captures the above intui-
tion before describing a practical variant.

Let the pages on the Web be denoted by 1,2, .. ., m. Let N(i) denote the
number of forward (outgoing) links from page i. Let B(i) denote the set of pages
that point to page i. For now, assume that the Web pages form a strongly connected
graph (every page can be reached from any other page). The basic PageRank of
page i, denoted by 7;, is nonnegative real number given by

=3 r]ﬂ\’(i), i=12,..,.m. (1)
JjeB(i)
The division by N(j) captures the intuition that pages that point to page i evenly
distribute their rank boost to all of the pages they point to. According to this defini-
tion, the PageRank of some page depends not only on the number of pages pointing
to it, but also on their importance. The row vector r is called a PageRank vector
and the value 7; is the PageRank of page i.

Effective, practical way to find PageRank vector r is using the language and
methods of linear algebra. Using the linear algebra the PageRank vector r can be
found by solving either the homogeneous linear system
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A" -pr" =07, (2)

or by solving the eigenvector problem
r=r-A, (3)
where " is a column transposed vector to the row vector 7, I is the identity matrix

of order m, 07 is the column vector of all 0s,and A" is a transposed matrix of
a square matrix 4 =[a; ]y, which elements a; are defined as follows

1
—— if page i points to page j,
a; =3 N(i) ®
0

otherwise .

Both formulations are subject to an additional equation, the normalization equation

r-1T =1, where 17 is the column vector of all I’s.

Simple PageRank is well defined only if the link graph is strongly connected,
where a graph is strongly connected when for each pair of nodes (i, j) there is a se-
quence of directed edges leading from i to j. One problem with solely using the
Web’s hyperlink structure to build the Markov matrix is apparent. Some rows of
the matrix may contain all zeros. Thus, such a matrix is not stochastic. This occurs
whenever a node contains no outlinks. Many such nodes exist on the Web. In par-
ticular, there are two related problems that arise on the real Web: rank sinks and
rank leaks [1]. A group of pages pointing to each other could have some links go-
ing to the group but no links going out forms a rank sink. An individual page that
does not have any outlinks constitutes a rank leak. Although, technically, a rank
leak is a special case of rank sink, a rank leak causes a different kind of problem. In
the case of a rank sink, nodes not in a sink receive a zero rank, which means we
cannot distinguish the importance of such nodes.

Page et al. [12] suggest eliminating these problems in two ways. First, they
remove all the leak nodes with out-degree 0. Second, in order to solve the problem
of sinks, they introduce a decay coefficient &, 0 < @< 1, in the PageRank defini-
tion (1). In this modified definition, only a fraction e of the rank of a page is dis-
tributed among the nodes that it points to. The remaining rank is distributed equally
among all the pages on the Web. Thus, the modified PageRank is [1]:

rp=a % ri/N@)+(-a)/m, i=12,...m &)
JjeB()
where m is the total number of nodes in the graph. Note that basic PageRank (1) is
a special case of (5) that occurs when we take a= 1.
Using the matrix A, defined by (4), is insufficient for the PageRank algorithm
because the iteration using A alone might not converge properly. It can cycle or the
limit may be dependent on the starting vector. Part of the explanation for this is that
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the matrix A is not yet necessarily stochastic [6]. For example, if some page is a
leak node than corresponding row of the matrix 4 contains all zeros (0).

Thus, to ensure that matrix A4 is stochastic, we must ensure that every row
sums to I. It can be proved that from matrix 4, we can obtain the stochastic matrix
S as follows [6]:

S=A+®T-1)/m, (6)

where b is a column vector such that

m
I if > a;=0,i.e. pageiisaleak node,
i = j=1 (7)

0 otherwise.

where i=1, 2, ..., mand 1 is a row vector of all /’s.
Given any stochastic matrix § we can obtain irreducible matrix G as follows [6]:

G=aS+(1-a0)E. (8)

where 0<a<I, E=(I1T -1)/n and 17, I are, respectively, the column and row

vectors of all /’s.

Because G is stochastic (i.e., the entries in each column sum to /), the domi-
nant eigenvalue of G is / [11]. Notice, also, that matrix G is completely positive,
1.e. all elements of G' are positive, although the probability of transitioning may be
very small in some cases, it is always nonzero. The irreducibility adjustment in-
sures that matrix G is primitive, where a nonnegative, irreducible matrix is primi-
tive if it has only one eigenvalue on its spectral circle [10]. The matrix irreducibil-
ity implies that the power method will converge to the stationary PageRank vector
r. It can be shown that

r=rG. 9)

2.2. Computational aspects of PageRank

Although PageRank can be described using equation (1), the summation
method is neither the most interesting nor the most illustrative of the algorithm’s
properties [1]. The preferable method is to compute the principal eigenvector of the
stochastic and irreducible matrix G defined by (8).

One of the simplest methods for computing the principal eigenvector of a ma-
trix is called power iteration. In power iteration, an arbitrary initial vector is multi-
plied repeatedly with the given matrix, until it converges to the principal eigenvec-
tor [6]. The idea of power iteration algorithm to compute the PageRank vector r is
given below [1]:

1) s« initial vector;
2) resG;
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3) if ||r —s|| < g then end, r is the PageRank vector;

4) s,
S) goto 2,
where |||| 1s the measure of difference of successive iterates and & is predetermined

tolerance level (computational accuracy).

In order for the power iteration to be practical, it is not only necessary that it
converge to the PageRank, but that it does so in a few iterations [1]. Theoretically,
the convergence of the power iteration for a matrix depends on the eigenvalue gap,
which is defined as the difference between the modulus of the two largest eigen-
values of the given matrix. Page et al. [12] claim that this is indeed the case, and
that the power iteration converges reasonably fast (practically in no more than in
100 iterations). It is worth noting that in practice we are more interested in the rela-
tive ordering of the pages induced by the PageRank (since this is used to rank the
pages) than the actual PageRank values themselves [1]. Thus, we can terminate the
power iteration once the ordering of the pages becomes reasonably stable. Experi-
ments [7] indicate that the ordering induced by the PageRank converges much fast-
er than the actual PageRank.

When dealing with data sets as large as Google uses (more than eight billion
web pages [5]), it is unrealistic to form a matrix G and find its dominant eigenvec-
tor. It is more efficient to compute the PageRank vector using the power method
variant, where we can compute the PageRank vector r in k iteratations, k = 1, 2, ...,
with the matrix A which elements are defined by (4) instead matrix G [6]:

r® = ar®D A+ [(@r®* Vb7 + (1-a)) /m]- 1. (10)

One of the benefits of using the above power method variant to compute the Pag-
eRank vector is the speed with which it converges. Specifically, the power method

on matrix G converges at the rate at which a quantity a* goes to zero. This gives
the ability to estimate the number of iterations required to reach a tolerance level

measured by Hr(k) —r®-D H The number of needed iterations k is approximately

log €/ log a, where € the tolerance level [9].
It is worth noting that the founders of Google, Lawrence Page and Sergey
Brin, use ar= 0.85 and find success with only 50 to 100 power iterations [9].
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3. Test the effectiveness of the PageRank algorithm

3.1. General assumptions

Using an iterative algorithm, in practice, according to the formula (7) is condi-
tioned to its efficiency, which in this case is measured by the number of iterations
to be done to accuracy that is required for elements of r vector for a fixed value of
the e coefficient. The independent parameters of simulation experiments were the
number of Web pages and their links and the density of these links. In accordance
with what has been said, a network of websites is mapped in the form of a directed
graph without loops, where the arc shows the indication (the link) from one page to
another, such as a linked thematically. As a measure of the density of links between
Web pages for the simulation experiments the A coefficient is assumed, hereafter
referred to as the density coefficient adjacency matrix of the Web pages graph
comprising m websites, determined from the following relationship:

m

N(i)
A= i=1

mz—m

(11)

Experiments were performed on randomly generated adjacency matrix with a pre-

determined value A coefficient. Due to the limited possibility of presentation of the

results of experiments will be based at most 20 Web pages networks (20 dimen-
sional adjacency matrix), which does not detract from the generality of observa-
tions and conclusions.

Experiments conducted to evaluate the effectiveness of an iterative algorithm
of determining the r vector were aimed at:

» assessment of the number of iterations of the algorithm and the clarity of the re-
sulting r vector depending e values at a fixed value of the A coefficient for the
Web with a fixed number of pages,

« assessment of the number of iterations of the algorithm, depending on the val-
ues of the coefficients aand A for the Web with a fixed number of pages,

+ assessment of the impact of coefficients & and A for the Web fixed number of
pages on the number of iterations of the algorithm required to achieve of r vec-
tor of highest distinctness,

» assessment of the impact the accuracy of determining the elements of the r vec-
tor on the number of iterations of the algorithm.
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3.2. Assessment of the number of iterations of the algorithm and the clarity
of the resulting  vector depending o values at a fixed value of the A coefficient
for the Web with a fixed number of pages

The research was conducted with the following assumptions:

* 20 Web pages were considered,

+ for considered Web the adjacency matrix is a description of a graph without
loops, with the density values A= 0.1.

Fig. 1 shows graphs of the PageRank coordinates of r vector for three values of the
coefficient e, equal to 0.1, 0.5 and 0.99, respectively.

The coordinate values of the PageRank vector
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Figure 1. Graphs coordinate values of the PageRank vector r for values
a=0.1,0.5 and 0.99

Analysis of the results of the research confirm the supposition any increased
expressiveness assessment of Web pages by PageRank algorithm with increasing
« coefficient, wherein the assessments expressiveness was measured using well-
known in statistics, the coefficient of variation (ratio of the standard deviation of
the coordinate vector 7 to their mean value), as:

v,=2, (12)

The values of the variation coefficient of r vector depending on the value of the &
coefficient shows the table 1.

Table 1. The values of the coefficient of variation of PageRank r vector depending
on the value of the acoefficient

o 0.1 0,5 0,99
v, 0,0816 0,3768 0,7528
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The desired increase of expressiveness coefficient of the r vector by increas-
ing the value of the & coefficient results in undesirable exponential increase of the
number of iterations of the algorithm of calculating the r vector, as shown in Fig. 2.

\

\

Number of iterations
= N
(] (]

=]

o1 02 03 04 05 0,6 0,7 08 09 0,99
Values of acoefficient

Figure 2. Plot of the number of iterations of the PageRank algorithm in the process
of determining the r vector for arvalues
Source: own preparation

For the experiment, the number L of iterations PageRank algorithm depending
on ¢ values can be estimated with high accuracy by using the following relation-
ship:

L=5,6815-¢"107 (13)

3.3. Assessment of the number of iterations of the algorithm, depending
on the values of the coefficients orand A for the Web with
a fixed number of pages

Experiments were performed for adjacency matrices of fixed dimensions
(20 x 20) and changing values of A coefficient ranging from 0.1 to 0.9 in steps of
0.1 and for fixed values of e coefficient. The number of iterations needed to de-
termine the r vector for the assumed accuracy of its coordinates have been meas-
ured. The results are shown in Table 2.

Table 2 shows that the increase in the value of A coefficient of the adjacency
matrix (increasing the number of links between the pages) will reduce the number
of iterations of the PageRank algorithm to determine the » vector desired accuracy
for fixed o coefficient. Number of iterations of the algorithm varies exponentially
for rare adjacency matrix (A= 0.1) by changing the linear for the adjacency matrix
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of A =0.5, up to by parabola negative coefficient directional - for a dense matrix,
ie. for A = 0.9. However, it seems that the actual Web networks are rather rare,
characterized by the values of the coefficient A < 0.5, therefore, to be expected in
such cases, the exponential increase in the number of iterations of the PageRank
algorithm to achieve the desired r vector with increasing & values.

Table 2. Number of iterations of the PageRank algorithm as a function
of the erand A coefficients

A coefficient

« 01 (02]03 04|05 |06]| 07 |08 ]| 09
0.1 5 5 5 4 4 4 4 3
02 8 6 6 5 5 5 5 4 4
03 10 8 7 6 6 6 5 5 4
04 12 9 8 7 7 7 6 5 5
05| 14 11 9 8 7 7 6 6 5
0.6 18 12 10 9 8 8 7 6 5
0.7 21 15 11 10 9 9 7 7 6
08 | 26 17 12 11 9 9 8 7 6
0.9 34 20 14 12 10 10 8 7 6
099 | 44 24 15 12 11 11 9 8 6

3.4. Assessment of the impact of coefficients wand A for the Web fixed
number of pages on the number of iterations of the algorithm
required to achieve of » vector of highest distinctness

Evaluation of the impact speed for obtaining the highest expressiveness of the
r vector by the algorithm based on the change both the value of the erand A coeffi-
cients was made indirectly through the distances analysis of r vectors obtained for
different values of the e coefficient from the vector which is characterized by the
greatest expressiveness, 1.e. the vector obtained for &= 0.99. Among the known dis-
tance measures between numerical vectors in experiment selected 7 following, the
most frequently used in practice: Euclidean, Chebyshev, Manhattan, Pearson, tan-
gents, angular and exponential module. The research was conducted for the adja-
cency matrix of fixed dimensions (20 x 20) and selected values of 4 coefficient. Fig.
3 shows the changes in the Euclidean distances between the r vectors and the vector
with the highest expressiveness (for &= 0.99) as a function of the e coefficient for
the adjacency matrix of values with A coefficient equals to 0.1, 0.5 and 0.9.

82



Fuclidean distance of r vectors from the reference vector r for a=0.99
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Figure 3. Changes of the Euclidean distance of r vectors to the vector with the greatest
distinctness (for @ = 0.99) as a function of the & coefficient for the adjacency matrix
with 4 coefficient equals to 0.1, 0.5 and 0.9

The waveforms similar to shown in Fig. 3 was also observed if the distance
between r vectors was measured by using the other distance measures. Thus justi-
fied hypothesis that for the rare adjacency matrix (4 = 0.1) the approximation of
the r vectors (decreasing distances), calculated for increasing values of e coeffi-
cient from the reference vector is much faster than for the denser of adjacency ma-
trix. Based on the results of the experiment can be concluded that the dense adja-
cency matrix (4 = 0.9) the r vector (for small values of & obtained using a small
number of iterations of the investigated algorithm) will be a good approximation of
the high expressiveness r vector, obtained for the high value of e coefficient, but at
the expense of a larger number of iterations. This conclusion may have important
practical significance when examined pages ranking algorithm would be used in
large networks with highly dynamic changes in the density of the relationship be-
tween the Web pages.

4. Conclusions

Many of today’s search engines use a two-step process to retrieve pages relat-
ed to a user’s query. In the first step, traditional text processing is done to find all
documents using the query terms, or related to the query terms by semantic mean-
ing. This can be done by a lookup into an inverted file, with a vector space method,
or with a query expander that uses a thesaurus. With the massive size of the Web,
this first step can result in thousands of retrieved pages related to the query.

83



To make this list manageable for a user, many search engines sort this list by some
ranking criterion. One popular way to create this ranking is to exploit the additional
information inherent in the Web due to its hyperlinking structure. Thus, link analy-
sis has become the means to ranking. One successful and well-publicized link-
based ranking system is PageRank, the ranking system used by the Google search
engine [2].

From the foregoing considerations, it follows that there is possibility of
practical achieve time savings associated with the ranking Web pages, by
substituting the result (page ranking), obtained through the implementation of the
PageRank algorithm, by the approximate ranking of these pages, based on the
analysis of their input stages, i.e., the number of appeals from other pages.
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