PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crack resistance of RC columns strengthened by CFRP under 30% of uls loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, among many existing reinforced concrete (RC) columns, it is impossible to find samples that work only as centrally compressed members – their vast majority work as eccentrically compressed members. On the other hand, the significant volumes of reconstruction in Ukraine will require studies of the work of various RC structures strengthened under different load levels. In addition to choosing the method of strengthening itself, the relevant tasks will be studies of bearing capacity, crack resistance, reliability (including residual resource) of structures, etc. This article presents the method of crack resistance experimental study of eccentrically compressed RC members. The proposed method was tested on unstrengthened (ordinary) and strengthened (in a stretched zone) RC columns; the results of experimental studies for ordinary and strengthened samples were also obtained. The columns were strengthened with a composite material (from many carbon-fiber-reinforced polymers) – the Sika Carbodur S512 strip. The feature of the crack resistance study of columns was that they were strengthened under the initial load level of 30 %. As a result of experimental research on the samples strengthened under load, we stated that the width of the crack decreased on average by about 36 % (at the comparable values of the active load). In turn, the average maximum length of cracks decreased to about 50 % of the height of the cross-section (for unstrengthened samples, this value was approximately 80 %), and the eccentric compressive ultimate load was increased by about 33 %.
Wydawca
Rocznik
Strony
36--45
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, Ukraine
autor
  • Lviv Polytechnic National University, Ukraine
  • Czestochowa University of Technology, Poland
  • Technical University of Kosice, Slovakia
  • Lviv Polytechnic National University, Ukraine
  • Czestochowa University of Technology, Poland
Bibliografia
  • 1. Andriichuk, O., Yasiuk, I., Uzhehov, S., Palyvoda, O., 2021. Experimental Research of Strength Characteristics of Steel Fiber Reinforced Concrete Gutters and Modeling of Their Work Using the Finite Element Method, Lecture Notes in Civil Engineering, 100, 1-8, DOI: 10.1007/978-3-030-57340-9_1
  • 2. Benzaid, R., Mesbah, H. A., 2013. Strength model for square concrete columns confined by external CFRP sheets, Structural Engineering and Mechanics, 46(1), 111-135, DOI: 10.12989/sem.2013.46.1.111
  • 3. Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021a. Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. IOP Conf. Ser. Mater. Sci. Eng., 1021, 012012, DOI: 10.1088/1757-899X/1021/1/012012
  • 4. Blikharskyy, Y., Selejdak, J., Bobalo, T., Khmil, R., Volynets, M., 2021b. Influence of the percentage of reinforcement by unstressed rebar on the deformability of pre-stressed RC beams. Production Engineering Archives, 27(3), 212-216, DOI: 10.30657/pea.2021.27.28
  • 5. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021c. Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646, DOI: 10.1016/j.cscm.2021.e00646
  • 6. Blikharskyy, Z., Selejdak, J., Blikharskyy, Y., Khmil, R., 2019. Corrosion of Reinforce Bars in RC Constructions, System Safety: Human - Technical Facility – Environment, 1(1), 277-283, DOI: 10.2478/czoto-2019-0036
  • 7. Blikharskyy, Z., Sobol, K., Markiv, T., Selejdak, J., 2021d. Properties of Concretes Incorporating Recycling Waste and Corrosion Susceptibility of Reinforcing Steel Bars. Materials, 14(10), 2638, DOI: 10.3390/ma14102638
  • 8. Blikharskyy, Z., Vegera, P., Vashkevych, R., Shnal, T., 2018. Fracture toughness of RC beams on the shear, strengthening by FRCM system, Matec Web of Conferences, 183, 02009, DOI: 10.1051/matecconf/201818302009
  • 9. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2021. Influence of the Percentage of Reinforcement on the Compressive Forces Loss in Pre-stressed RC Beams Strengthened with a Package of Steel Bars. Lecture Notes in Civil Engineering, 2021, 100, 53–62, DOI: 10.1007/978-3-030-57340-9_7
  • 10. Czajkowska, A., Raczkiewicz, W., Ingaldi, M., 2023. Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies, Production Engineering Archives, 29(3), 288- 297. DOI: 10.30657/pea.2023.29.33
  • 11. Dmytrenko, Y., Genzerskiy, Y., Yakovenko, I., Bakulin, Y., 2023. Strength analysis of normal cross-sections of reinforced concrete structures in uniaxial bending by Wood- Armer method in LIRA SAPR software. AIP Conference Proceedings, 2678, 020006, DOI: 10.1063/5.0118680
  • 12. Dmytrenko, Y., Yakovenko, I., Fesenko, O.. 2016. Strength of eccentrically tensioned reinforced concrete structures with small eccentricities by normal sections. Scientific Review Engineering and Environmental Sciences, 30(3), 424–438, DOI: 10.22630/PNIKS.2021.30.3.36
  • 13. Dorofeyev, V., Pushkar, N., 2023. The Bearing-Capacity of Precast Beams with Vertical Contact Plane. Lecture Notes in Civil Engineering, 290, 67-75, DOI: 10.1007/978-3- 031-14141-6_7
  • 14. Gajdosova, K., Bilcik, J., 2013. Full-Scale Testing of CFRP-Strengthened Slender Reinforced Concrete Columns, Journal of Composites for Construction, 17(2), 239-248, DOI: 10.1061/(ASCE)CC.1943-5614.0000329
  • 15. Hadi, M. N. S., 2010. Behaviour of Reinforced Concrete Columns Wrapped with Fibre Reinforced Polymer Under Eccentric Loads, Australian Journal of Structural Engineering, 10(2), 169-178, DOI: 10.1080/13287982.2010.11465042
  • 16. Helbrych, P., 2021. Effect of dosing with propylene fibers on the mechanical properties of concretes, Construction of Optimized Energy Potential (CoOEP), 10(2), 39-44, DOI: 10.17512/bozpe.2021.2.05
  • 17. Ilnytskyy, B.M., Kramarchuk, A.P., Bula, S.S., Bobalo, T.V., 2019. Study of the vibration influence on load-bearing floor structures in case of machinery operation. IOP Conference Series: Materials Science and Engineering, 708(1), 012052, DOI: 10.1088/1757-899X/708/1/012052
  • 18. Katunský, D., Katunská, J., Tóth, S., 2015. Possibility of choices industrial hall object reconstruction. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2(5), 389-396.
  • 19. Khmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., Vegera, P. I., 2021. Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load, IOP Conference Series: Materials Science and Engineering, 1021(1), 012014, DOI: 10.1088/1757-899X/1021/1/012014
  • 20. Kobaka, J., Katzer, J., 2022. A principal component analysis in concrete design, Construction of Optimized Energy Potential (CoOEP), 11, 203-214, DOI: 10.17512/bozpe.2022.11.23
  • 21. Kolchunov Vl.I., Yakovenko I.A., 2016. About the violation solid effect of reinforced concrete in reconstruction design of textile industry enterprises. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil'noi Promyshlennosti, 3(363), 258-263.
  • 22. Kos, Ž., Gotal Dmitrović, L., Klimenko, E., 2017. Developing a model of a strain (deformation) of a damaged reinforced concrete pillar in relation to a linear load capacity, Tehnički glasnik, 11(4), 150-154, https://hrcak.srce.hr/190990
  • 23. Koteš, P., Vavruš, M., Jošt, J., Prokop, J., 2020. Strengthening of concrete column by using the wrapper layer of fibre reinforced concrete, Materials, 13(23), 1-21, 5432, DOI: 10.3390/ma13235432
  • 24. Koteš, P., Vavruš, M., Raczkiewicz, W., 2022. Innovative strengthening of RC columns using a layer of a fibre reinforced concrete, Acta Polytechnica CTU Proceedings, 33, 309-315, DOI: 10.14311/APP.2022.33.0309
  • 25. Koteš, P., Zahuranec, M., Vavruš, M., 2023. Diagnostic and Design of Reconstruction of Building Váhostav, Lecture Notes in Civil Engineering, 322, 165-174, DOI: 10.1007/978-3-031-26879-3_13
  • 26. Krainskyi, P., Blikharskyy, Y., Khmil, R., Vegera, P., 2020. Crack Resistance of RC Columns Strengthened by Jacketing, Lecture Notes in Civil Engineering, 47, 195-201, DOI: 10.1007/978-3-030-27011-7_25
  • 27. Krynke, M., 2019. Managing the tasks of employees in the construction industry, Construction of optimized energy potential, 8(1), 137-145, DOI: 10.17512/bozpe.2019.1.15
  • 28. Lenkovskiy, T.M., Kulyk, V.V., Duriagina, Z.A., Kovalchuk, R.A., Topilnytskyy, V.H., Vira, V.V., Tepla, T.L., 2017. Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel. Archives of Materials Science and Engineering, 84(1), 34-41, DOI: 10.5604/01.3001.0010.3029
  • 29. Lipiński, T., 2021. Investigation of corrosion rate of X55CrMo14 stainless steel at 65% nitrate acid at 348 K, Production Engineering Archives, 27(2), 108-111, DOI: 10.30657/pea.2021.27.13
  • 30. Lipiński, T., Wach, A., 2020. Influence of inclusions on bending fatigue strength coefficient the medium carbon steel melted in an electric furnace, Production Engineering Archives, 26(3), 88-91, DOI: 10.30657/pea.2020.26.18
  • 31. Nikolić, R.R., Djoković, J.M., Hadzima, B., Ulewicz, R. (2020), Spot-Weld Service Life Estimate Based on Application of the Interfacial Crack Concept. Materials, 13, 2976. 10.3390/ma13132976
  • 32. Ostash, O.P., Muravs'Kyi, L.I., Voronyak, T.I., Kmet', A.B., Andreiko, I.M., Vira, V.V., 2011. Determination of the size of the fatigue prefracture zone by the method of phaseshifting interferometry. Materials Science, 46(6), 781-788, DOI: 10.1007/s11003-011-9353-1
  • 33. Pham, T. M., Doan, L. V., Hadi, M. N. S., 2013. Strengthening square reinforced concrete columns by circularisation and FRP confinement, Construction and Building Materials, 49, 490-499, DOI: 10.1016/j.conbuildmat.2013.08.082
  • 34. Popławski, J., 2020. Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, Construction of Optimized Energy Potential (CoOEP), 9(1), 89-96, DOI: https://bozpe.pcz.pl/archives/1-2020/bozpe2020111
  • 35. Selejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z., 2020. Calculation of Reinforced Concrete Columns Strengthened by CFRP, Lecture Notes in Civil Engineering, 47, 400-410, DOI: 10.1007/978-3-030-27011-7_51
  • 36. Selejdak, J., Khmil, R., Blikharskyy, Z., 2018. The influence of simultaneous action of the aggressive environment and loading on strength of RC beams, Matec Web of Conferences, 183, 02002, DOI: https://doi.org/10.1051/matecconf/201818302002
  • 37. Selejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z., 2021. Crack resistance rc columns strengthened by cfrp system. Key Engineering Materials, 2021, 878, 127-133, DOI: 10.4028/www.scientific.net/KEM.878.127
  • 38. Semko, O., Filonenko, O., Yurin, O., Avramenko, Y., Mahas, N., 2023. Characteristic damages of reinforced concrete structures of the covering exposed to moisture. AIP Conference Proceedings, 2684, 030039, DOI: 10.1063/5.0120020
  • 39. Torabian, A., Mostofinejad, D., 2017. Externally Bonded Reinforcement on Grooves Technique in Circular Reinforced Columns Strengthened with Longitudinal Carbon Fiber-Reinforced Polymer under Eccentric Loading, ACI Structural Journal, 114(4), 861-873, DOI: 10.14359/51689567
  • 40. Tytarenko, R., Khmil, R., Selejdak, J., Vashkevych, R., 2023. Probabilistic Durability Assessment of RC Structures in Operation: An Analytical Review of Existing Methods, Lecture Notes in Civil Engineering, 290, 408-415, DOI: 10.1007/978-3-031-14141-6_41
  • 41. Ulewicz, R., Mazur, M., Bokůvka, O. 2013. Structure and mechanical properties of finegrained steels, Periodica Polytechnica Transportation Engineering, 41(2). 111-115
  • 42. Vatulia, G.L., Smolyanyuk, N.V., Shevchenko, A.A., Orel, Y.F., Kovalov, M.O., 2020. Evaluation of the load-bearing capacity of variously shaped steel-concrete slabs under short term loading. IOP Conference Series: Materials Science and Engineering, 1002(1), 012007, DOI: 10.1088/1757-899X/1002/1/012007
  • 43. Vegera, P., Vashkevych, R., Blikharskyy, Y., Khmil, R., 2021. Development methodology of determinating residual carrying capacity of reinforced concrete beams with damages tensile reinforcement which occurred during loading. Eastern-European Journal of Enterprise Technologies, 4(7-112), 6-17, DOI: 10.15587/1729-4061.2021.237954
  • 44. Yakovenko I., Dmytrenko Y., Bakulina V., 2022. Construction of Analytical Coupling Model in Reinforced Concrete Structures in the Presence of Discrete Cracks. Lecture Notes in Mechanical Engineering (LNME). Springer, Cham, 2022, 107-120. 10.1007/978-3-030-85057-9_10
  • 45. Zahuranec, M., Koteš, P., Kraľovanec, J., 2023. The Influence of the Prestressing Level of the Fully Threaded Anchor Bar on the Corrosion Rate, Buildings, 13(7), 1592, DOI: 10.3390/buildings13071592
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c41e7d5-d2df-4076-b244-eac3b2ebacea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.