Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main objective of this study is to define a new class of bipolar soft (BS) separation axioms known as BS͠͠ Ti -space (i = 0, 1, 2, 3, 4). This type is defined in terms of ordinary points. We prove that BS͠͠ Ti -space implies BS͠͠ Ti-1-space for i = 1, 2; however, the opposite is incorrect, as demonstrated by an example. For i = 0, 1, 2, 3, 4, we investigate that every BS͠͠ Ti -space is soft͠ Ti -space; and we set up a conditio in which the reverse is true. Moreover, we point out that a BS subspace of a BS͠͠ Ti -space is a BS͠͠ Ti -space for i = 0, 1, 2, 3.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220189
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science, University of Zakho, Zakho 42002, Iraq; Department of Computer Science, College of Science, Cihan University-Duhok, Duhok 42001, Iraq
autor
- Department of Mathematics, Faculty of Education, University of Zakho, Zakho 42002, Iraq
Bibliografia
- [1] L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338–353.
- [2] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11 (1982), no. 5, 341–356.
- [3] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999), no. 4-5, 19–31.
- [4] N. Cagman, S. Enginoglu, and F. Citak, Fuzzy soft set theory and its applications, Iran. J. Fuzzy Syst. 8 (2011), no. 3, 137–147.
- [5] Y. Çelik and S. Yamak, Fuzzy soft set theory applied to medical diagnosis using fuzzy arithmetic operations, J. Inequal. Appl. 2013 (2013), no. 1, 1–9.
- [6] Y. Zou and Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge-Based Syst. 21 (2008), no. 8, 941–945.
- [7] P. K. Maji, R. Biswas, and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003), no. 4–5, 555–562.
- [8] M. I. Ali, F. Feng, X. Liu, W. K. Min, and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009), no. 9, 1547–1553.
- [9] M. Abbas, M. I. Ali, and S. Romaguera, Generalized operations in soft set theory via relaxed conditions on parameters, Filomat 31 (2017), no. 19, 5955–5964.
- [10] M. Saeed, M. Hussain, and A. A. Mughal, A study of soft sets with soft members and soft elements: A new approach, Punjab Univ. J. Math. 52 (2020), no. 8, 1–15.
- [11] P. Zhu and Q. Wen, Operations on soft sets revisited, J. Appl. Math. 2013 (2013), Article ID 105752.
- [12] T. M. Al-shami and M. E. El-Shafei, T -soft equality relations, Turkish J. Math. 44 (2020), no. 4, 1427–1441.
- [13] S. Y. Musa and B. A. Asaad, Bipolar hypersoft sets, Mathematics 9 (2021), no. 15, 1826.
- [14] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011), no. 7, 1786–1799.
- [15] B. A. Asaad, T. M. Al-shami, and E. A. Abo-Tabl, Applications of some operators on supra topological spaces, Demonstr. Math. 53 (2020), no. 1, 292–308.
- [16] B. A. Asaad and S. Y. Musa, Continuity and compactness via hypersoft open sets, Int. J. Neutro. Sci. 19 (2022), no. 2, 19–29.
- [17] T. M. Al-shami, L. D. Kočinac, and B. A. Asaad, Sum of soft topological spaces, Mathematics 8 (2020), no. 6, 990.
- [18] T. M. Al-shami, M. E. El-Shafei, and B. A. Asaad, Sum of soft topological ordered spaces, Adv. Math. Sci. J. 9 (2020), no. 7, 4695–4710.
- [19] B. A. Asaad, T. M. Al-shami, and A. Mhemdi, Bioperators on soft topological spaces, AIMS Math. 6 (2021), no. 11, 12471–12490.
- [20] B. A. Asaad, Results on soft extremally disconnectedness of soft topological spaces, J. Math. Comput. Sci. 17 (2017), 448–464.
- [21] M. Matejdes, On some operations on soft topological spaces, Filomat 35 (2021), no. 5, 1693–1705.
- [22] S. Y. Musa and B. A. Asaad, Hypersoft topological spaces, Neutrosophic Sets Syst. 49 (2022), 397–415.
- [23] S. Y. Musa and B. A. Asaad, Connectedness on hypersoft topological spaces, Neutrosophic Sets Syst. 51 (2022), 666–680.
- [24] T. M. Al-shami, A. Tercan, and A. Mhemdi, New soft separation axioms and fixed soft points with respect to total belong and total non-belong relations, Demonstr. Math. 54 (2021), no. 1, 196–211.
- [25] T. M. Al-shami and M. E. El-Shafei, Two new forms of ordered soft separation axioms, Demonstr. Math. 53 (2020), no. 1, 8–26.
- [26] T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng. 2021 (2021), Article ID 8876978.
- [27] S. Bayramov and C. Gunduz, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl. Math. 9 (2018), no. 21, 82–93.
- [28] M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput. 23 (2019), no. 3, 1049–1057.
- [29] A. Singh and N. S. Noorie, Remarks on soft axioms, Ann. Fuzzy Math. Inform. 14 (2017), no. 5, 503–513.
- [30] S. Hussain and B. Ahmad, Soft separation axioms in soft topological spaces, Hacet. J. Math. Stat. 44 (2015), no. 3, 559–568.
- [31] T. M. Al-shami and M. E. El-Shafei, Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone, Soft Comput. 24 (2020), no. 7, 5377–5387.
- [32] M. Shabir and M. Naz, On bipolar soft sets, 2013, arXiv: https://arxiv.org/abs/1303.1344.
- [33] M. Shabir and A. Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces, Songklanakarin J. Sci. Technol. 39 (2017), no. 3, 359–371.
- [34] T. Y. Öztürk, On bipolar soft topological spaces, J. New Theory 20 (2018), 64–75.
- [35] T. M. Al-shami, Bipolar soft sets: relations between them and ordinary points and their applications, Complexity 2021 (2021), Article ID 6621854.
- [36] F. Karaaslan and S. Karataş, A new approach to bipolar soft sets and its applications, Discrete Math. Algorithms Appl. 7 (2015), no. 4, 1550054.
- [37] T. Mahmood, A novel approach towards bipolar soft sets and their applications, J. Math. 2020 (2020), Article ID 4690808.
- [38] A. Fadel and S. C. Dzul-Kiï, Bipolar soft topological spaces, Eur. J. Pure Appl. Math. 13 (2020), no. 2, 227–245.
- [39] A. Fadel and S. C. Dzul-Kifli, Bipolar soft functions, AIMS Math. 6 (2021), no. 5, 4428–4446.
- [40] A. Fadel and N. Hassan, Separation axioms of bipolar soft topological space, in: Journal of Physics: Conference Series 2019 (Vol. 1212, No. 1, p. 012017, IOP Publishing.
- [41] S. Y. Musa and B. A. Asaad, Topological structures via bipolar hypersoft sets, J. Math. 2022 (2022), Article ID 2896053.
- [42] S. Y. Musa and B. A. Asaad, Connectedness on bipolar hypersoft topological spaces, J. Intell. Fuzzy Syst. 43 (2022), no. 3, 4095–4105.
- [43] S. Y. Musa and B. A. Asaad, Bipolar hypersoft homomorphism maps and bipolar hypersoft compact spaces, Int. J. Neutro. Sci. 19 (2022), no. 2, 95–107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c3cee71-5989-4e4b-83c0-c919c2c96d6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.