PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-dimensional Analysis of a Tunnel Excavation in a Jointed Rock Mass

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A tunnel at a shallow depth, lying between several and 55 meters, was excavated in a jointed rock mass. Models of the rock mass and tunnel were elaborated basing on the data from an object in Carpathian flysch (Poland). The tunnel behaviour was analysed by using FLAC3D program and Coulomb-Mohr criterion and ubiquitous model of the rock mass with 10 combinations of the joint systems orientation (with respect to the tunnel axis). The tunnel shape is horse-shoe and its height equals 4.5 m. In each tunnel cross-section, 16 rock bolts and 20 cm shotcrete layer (with the strength increasing with time) were mounted. In cases of unfavourable orientation of joint system and unstable conditions, rock bolting of the tunnel heading face was installed and modelled. The numerical analysis was carried out for each excavation step, equal to 1.5 m. The entire deformation process and stress redistribution were registered starting with the cross-section in originally intact rock mass (i.e. before the tunnel heading face reached it), to the section located far from the face, in already supported and stabilized tunnel. The results obtained show the effect of discontinuities orientation on the stress distribution and displace ment magnitude. The first signs of tunnel approaching heading face appear in a cross-section situated in a distance of 7 to 9 m from it. The processes of stress and displacement redistribution are long-range and occur in a distance of many meters from the already excavated tunnel face. The important result of the analysis was the determination of the ground response curves representing decompression and support loading as a function of the excavation advance. These results allow for better design of a proper support system of the tunnel.
Rocznik
Strony
123–--134
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Kościerska 7, 80-328 Gdańsk, Poland;
Bibliografia
  • Brown E.T., Bray J.W., Ladanyi B., Hoek E. (1983) Ground response curves for rock tunnels, Journal Geotechn. Eng. ASCE, 109(1), 15–39 (doi: 10.1061/(ASCE)0733-9410(1984)110:1(140)).
  • Egger P. (1981) Deformations au front de taille. Determination de la cohesion du massif rocheux, Revue Francaise Geotechnique, 4.
  • Hu Z.,Wu B., Xu N.,Wang K. (2022) Effect of discontinuities on the stress redistribution and rock failure: A case of underground caverns, Tunnelling and Underground Space Technology, 127, 104583 (doi: 10.1016/j.tust.2022.104583).
  • Itasca C.G. (2000) Flac 3D Manual, Minneapolis.
  • Kabwe E., Karakus M., Chanda E.K. (2020) Proposed solution for the ground reaction of non-circular tunnels in an elastic-perfectly plastic rock mass, Computers and Geotechnics, 119, 103354 (doi.org/10.1016/j.compgeo.2019.103354).
  • Karakus M. (2007) Appraising the method accounting for 3D tunnelling effect in 2D plane strain FE analysis, Tunnelling and Underground Space Technology, 22 (1), 47–56 (doi.org/‘10.1016/j.tust.2006.01.004).
  • Karakus M., Fowell R.J. (2003) Effect of different tunel face advance excavation on the settlement by FEM, Tunnelling and Underground Space Technology, 18 (5), 513–523 (doi.org/10.1016/S0886-7798(03)00068-3).
  • Ksiazkiewicz M. (1977) Tectonics of the Carpathians, [in:] Pozaryski W. eds. Vol. IV Tectonics, Wydawnictwo Geologiczne, Warszawa, 476–609.
  • Kyung-Ho P., Bituporn Tontavanich, Joo-Gong Lee (2008) A simple procedure for ground response curve of circular tunel in elastic-strain softening rock mass, Tunneling and Undergound Space Technology, 22 (2), 151–159 (https://doi.org/10.1016/j.tust.2007.03.002).
  • Labiouse V. (1996) Ground response curves for rock excavations supported by ungrout-ed tensioned rockbolts, Rock Mechanics and Rock Engineering, 29 (1), 19–38.
  • Li A., Liu Y., Dai F., Liu K.,Wei M. (2020) Continuum analysis of the structurally controlled displacements for large-scale undergound caverns in bedded rock masses, Tunnelling and Underground Space Technology, 97, 103288 (doi: 10.1016/j.tust.2022. 103288).
  • Malata T. (2008) Development of Polish Flysch Carpathians revealed in outcrops and landslide, Przeglad Geologiczny, 56 (8/1), 688–691.
  • Mohammad Reza Zareifard (2021) Ground response curve of deep circular tunel in rock mass exhibiting Hoek-Brown strain-softening behaviour considering the dead weight loading, European Journal of Environmental and Civil Engineering, 25 (14).
  • Muller L. (1978) Der Felsbau, 3-er Band: Tunnelbau, Stuttgart: Enke-Verlag.
  • Oke J., Vlachopoulos N., Diederichs M. (2018) Improvement to the Convergence-Confinement Method: Inclusion of Support Installation Proximity and Stiffness, Rock Mechanics and Rock Engineering, 51, 1495–1519.
  • Reed M.B. (1988) The influence of out-of-plane stress on plane problem in rock mechanics, Int. Journal Num. & Anal. Meth. in Geomechanics, 12 (2), 173–181.
  • Sulem J., Panet M., Guenot A. (1987) Closure analysis in Deep Tunnels, Int. Journal Rock Mech. Min. Sci. Abstr., 24 (3), 337–345.
  • Thiel K. (1989) Rock Mechanics in Hydroengineering, PWN Warszawa, Ensevier Amsterdam-Oxford-New York-Tokyo.
  • Vlachopoulos N., Diederichs M. (2014) Appropriate uses and practical limitations of 2D numerical analysis of tunnels and tunnel support response, Geotechnical and Geological Engineeing, 32 (2), 469–488.
  • Wang X., Kulatilake P., Song W. (2012) Stability investigations around a mine tunnel through three-dimensional discontinuum and continuum stress analysis, Tunnelling andUnderground Space Technology, 32, 98–112.
  • Yamamoto J., Mogi G., Yamaguchi U. (1991) Three-dimensional supporting effect of tunnel face, [in:] Beer, Booker Carter (eds.), Computer Methods and Advances in Geomechanics, 1527–1532, Rotterdam-Boston: Balkema.
  • Zabuski L. (2006) Trójwymiarowa analiza zachowania sie tunelu w masywie skalnym w trakcie drazenia tunelu (in Polish), Polish Academy of Sciences, Institute of Hydro-Engineering, Int, report.
  • Zabuski L. (2002) Zachowanie sie fliszowego osrodka skalnego w otoczeniu konstrukcji podziemnej (na przykładzie tunelu na nieduzej głebokosci) (in Polish), Institute of Hydro-Engineering, Gdansk, 262 p.
  • Zamora Hernandez Y., Durand Farfan A., Pacheco de Assis A. (2019) Three-dimensional analysis of excavation face stability of shallow tunnels, Tunnelling and Underground Space Technology, 92, 103062 (doi.org/10.1016/j.tust.2019. 103062).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c34165c-0c41-420b-b9da-4c80085e2500
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.