PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of nitriding and laser remelting on properties of austenitic stainless steel type X10CrNi18-8 and cavitation erosion resistance

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents properties of surface layers. Surface layers were obtained by using low temperature glow–discharge nitriding process and laser remelting carried out on austenitic stainless steel type X10CrNi18-8. Investigations were done by using an Ultra Nanoindentation Tester (UNHT) in the Warsaw Institute of Fundamental Technological Research. The influence of the above mentioned treatments on obtained surface layers is shown. The values of the Vickers hardness (HV), the irreversible indentation work (Wir), the reversible work (We) and the maximum depth (hmax) during indentation were determined using the method proposed by Oliver and Pharr [1]. On the basis of mechanical properties, the elasticity (Ie) and ductility (Iir) indexes were calculated. Moreover, microstructure cross-section of the austenitic stainless steel after nitriding process and laser remelting was observed using a scanning electron microscope. Cavitation test was performed at a vibratory rig with stationary specimen. On the basis of erosion curves the cavitation resistance was evaluated.
Rocznik
Strony
21--31
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr., fot.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Technology and Welding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Technology and Welding, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Institute of Fundamental Technological Research of the Polish Academy of Sciences, Department of Mechanics of Materials, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • 1. Oliver W., Pharr G.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7 (1992), 1564-1583.
  • 2. Kwok C., Man H., Cheng F.: Cavitation erosion and pitting corrosion of laser surface melted stainless steels. Surface and Coatings Technology, 99 (1998), 295-304.
  • 3. Conde A., Colaco R., Vilar R., Damborenea J.: Corrosion behaviour of steels after laser surface melting. Materials and Design, 21, (2000), 441-445.
  • 4. Khalfallah I., Rahoma M., Abboud J., Benyounis K.: Microstructure and corrosion behaviour of austenitic stainless steel treated. Optics & Laser Technology, 43 (2011), 806-813.
  • 5. McCafferty E., Moore P.: Corrosion behavior of laser-surface melted and laser-surface alloyed steels. Journal of the Electrochemical Society, 133 (1986), 1090-1096.
  • 6. Akgun O., Inal O.: Laser surface melting and alloying of 304L stainless steel: Part II. Corrosion and Wear Resistance Properties. Journal of Materials Science, 30 (1995), 6105-6112.
  • 7. Liang W., Xiaolei X., Zhiwei Y., Zukun H.: Low pressure plasma arc source ion nitriding of austenitic stainless steel. Surface and Coatings Technology, 124 (2000), 93-96.
  • 8. Liang W., Xiaolei X., Jiujun X., Yaqin S.: Characteristic of low pressure plasma arc source ion nitrided layer on austenitic stainless steel at low temperature. Thin Solid Films, 391 (2001), 11-16.
  • 9. Borowski T., Trojanowski J., Sobiecki R., Wierzchoń T.: Low temperature glow-discharge nitriding of austenitic steel – medicine applification aspects. Surface Engineering, 3 (2005), 21-26.
  • 10. Trojanowski J., Kamiński M., Wierzchoń T.: Niskotemperaturowe azotowanie stali austenitycznych w warunkach wyładowania jarzeniowego. Inżynieria powierzchni, 2 (2002), 3-10.
  • 11. Sobiecki J., Brojanowska A., Kazior J., Wierzchoń T.: The structure and corrosion resistance of sinters form 316L steel after plasma nitriding. Inżynieria Materiałowa, 5 (2006), 1232-1235.
  • 12. Sobiecki J., Kazior J., Wierzchoń T.: Low temperature plasma nitriding of sintered austenitic steel. Inżynieria Materiałowa, 5 (2005), 434-436.
  • 13. Trojanowski J., Senatorski J.: Opracowanie technologii azotowania jarzeniowego stali typu 316L. Sprawozdanie Nr 13.2.01.230. Instytutu Mechaniki Precyzyjnej, 2006.
  • 14. Li C. X., Bell T.: Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corrosion Science, 46 (2004), 1527-1547.
  • 15. Yasumaru N.: Low temperature ion nitriding of austenitic stainless steels. Materials Transactions, 39 (1998), 1046-1052.
  • 16. Poirier L., Corre Y., Lebrun J.: Solutions to improve surface hardness of stainless steels without loss of corrosion resistance. Surface Engineering, 18 (2002), 439-442.
  • 17. Sitko A., Szkodo M., Gazda M.: The Characteristic of Surface Layers on Austenitic Stainless Steel After Glow-discharge Nitriding Process. Solid State Phenomena, Vol. 165 (2010), 165-168.
  • 18. Sitko A., Szkodo M., Gazda M.: The Influence of Gas Mixture in the Glow-discharge Nitriding Process of Austenitic Stainless Steel on Characteristic of Nitrided Cases. Key Engineering Materials, Vol. 490 (2012), 282-287.
  • 19. Chmiel J., Janicki W., Krella A., Steller J.: Cavitation loading tests at the vibration stand with the resting sample. Problemy eksploatacji, 1, (2010), 91-100.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c31e369-8f2b-4674-b17a-cc3cb8a33315
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.