PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The stability of soil aggregates in tilled fallow areas in Hyderabad district, Pakistan

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Trwałość agregatów glebowych na terenach użytkowanych rolniczo w dystrykcie Hyderabad, Pakistan
Języki publikacji
EN
Abstrakty
EN
Arid areas are particularly susceptible to soil erosion due to long dry periods and sudden heavy downpours. This study investigates the aggregate size distribution and aggregate stability of twelve tilled fallow areas of Hyderabad district, Sindh, Pakistan. This study determined aggregate size distribution by dry sieving to evaluate the seedbed condition and aggregate stability using wet sieving to assess the susceptibility of tilled fallow areas to soil erosion. The aggregate size distribution of the soils of the selected areas was highly variable. Gulistan-e-Sarmast had the largest number of clods (51.0%) followed by Kohsar (49.0%), Latifabad # 10 (41.10%) and Daman-e-Kohsar (39.0%). Fazal Sun City, the left side of the Indus River, the Village Nooral Detha and the left side of the Abdullah Sports city had a greater number of large (>8.0 mm) and small aggregates (<0.5 mm). The optimum aggregate size distribution was found in the left side of the channel, which had the largest number of aggregates (50.50%) in the 0.5–8.0 mm sieve size range. Maximum aggregate stability (AS) was found in Gulistan- e-Sarmast (46%), Kohsar (42%) and Latifabad # 10 (34%), while all other soils had minimum aggregate stability (<14%). The minimum aggregate stabilities demonstrate that the tilled fallow areas of Hyderabad district are highly susceptible to erosion. Therefore, the present study suggests investigating potential ways to enhance the aggregate stabilities of soils.
PL
Obszary o klimacie zwrotnikowym suchym są szczególnie podatne na erozję gleby z powodu długich okresów suszy i nagłych ulewnych opadów deszczu. W pracy przedstawiono wyniki badań rozkładu wielkości agregatów glebowych i ich trwałości w dwunastu uprawianych gruntach dystryktu Hyderabad w Sindh w Pakistanie. Rozkład wielkości agregatów oznaczano poprzez przesiewanie suchej gleby, a trwałość agregatów określano metodą przesiewania na mokro. Wielkości te charakteryzują podatność gleb uprawnych na erozję. Rozkład granulometryczny gleb na badanym obszarze był silnie zróżnicowany. Największą liczbę agregatów (51,0%) zawierała gleba w Gulistan-e-Sarmast, mniejszą – gleba w Kohsar (49,0%), Latifabad (41,1%) i Daman-e-Kohsar (39,0%). Gleby na terenie miasta Fazal Sun na lewym brzegu Indusu, gleby we wsi Nooral Detha i mieście Abdullah Sports charakteryzowały się znaczną liczbą dużych (>8 mm) i małych (<0,5 mm) agregatów. Optymalny rozkład wielkości agregatów glebowych stwierdzono na lewym brzegu kanału, gdzie gleba zawierała najwięcej (50,5%) agregatów w przedziale wielkości 0,5–8,0 mm. Maksymalną trwałość agregatów wykazywały gleby w Gulistan-e-Sarmast (46%), Kohsar (42%) i Latifabad (34%), trwałość agregatów pozostałych gleb była minimalna (<14%). Stwierdzona minimalna trwałość agregatów świadczy, że gleby użytkowane rolniczo w dystrykcie Hyderabad są silnie podatne na erozję. Wyniki przedstawionych badań sugerują potrzebę poszukiwania sposobów na zwiększenie trwałości agregatów glebowych.
Wydawca
Rocznik
Tom
Strony
51--60
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
autor
  • Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, Pakistan
autor
  • McGill University, Faculty of Agricultural and Environmental Sciences, Department of Bioresource Engineering, Quebec, Canada, H9X 3V9
Bibliografia
  • ADAM K.M., ERBACH D.C. 1992. Secondary tillage tool effect on soil aggregation. Transactions of the American Society of Agricultural Engineers. Vol. 35. Iss. 6 p.1771–1776.
  • ADAMOWSKI J., ADAMOWSKI K., BOUGADIS J. 2010. Influence of trend on short duration design storms. Water Resources Management. Vol. 24. Iss. 3. p. 401–413.
  • ADAMOWSKI J., CHAN H., PRASHER S., SHARDA V.N. 2012a. Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan microwatersheds with limited data. Journal of Hydroinformatics. Vol. 14. Iss. 3 p. 731–744.
  • ADAMOWSKI J., PROKOPH A., ADAMOWSKI K. 2012b. Influence of the 11 year solar cycle on annual streamflow maxima in Southern Canada. Journal of Hydrology. Vol. 442 p. 55–62.
  • ADAMOWSKI K., PROKOPH A., ADAMOWSKI J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes. Vol. 23. Iss. 18 p. 2686–2696.
  • ALVAREZ M.F., OSTERRIETH M.L., DEL RIO J.L. 2012. Changes on aggregates morphology and roughness induced by different uses of typical Argiudolls, Buenos Aires province, Argentina. Soil and Tillage Research. Vol. 119 p. 38–49.
  • AMÉZKETA E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculture. Vol. 14. Iss. 2–3 p. 83–151.
  • AN S.S., HUANG Y.M., ZHENG F.L. 2009. Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau, Northwest China. Applied Soil Ecology. Vol. 41. Iss. 3 p. 286–292.
  • ARSHAD M.A., COHEN G.M. 1992. Characterization of soil quality: physical and chemical criteria. American Journal of Alternative Agriculture. Vol. 7. Iss. 1–2 p. 25–32.
  • BELAYNEH A., ADAMOWSKI J., KHALIL B., OZGA-ZIELINSKI B. 2014. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet-support vector regression models. Journal of Hydrology. Vol. 508 p. 418–429.
  • BOUYOUCOS G.J., 1927. The hydrometer as a new method for the mechanical analysis of soils. Soil Science. Vol. 23. Iss. 5 p. 343–353.
  • BRAUNACK M.V., DEXTER A.R. 1989. Soil aggregation in the seedbed: A review. II. Effect of aggregate sizes on plant growth. Soil and Tillage Research. Vol. 14 p. 281–298.
  • BROERSMA K., ROBERTSON J.A., CHANASYK D.S. 1997. The effects of diverse cropping systems on aggregation of a Luvisolic soil in the Peace River region. Canadian Journal of Soil Science. Vol. 77 p. 323–329.
  • BUTLER C., ADAMOWSKI J. 2015. Empowering marginalized communities in water resources management: Addressing inequitable practices in Participatory Model Building. Journal of Environmental Management. Vol. 153 p. 153–162.
  • CAMPISI S., ADAMOWSKI J., ORON G. 2012. Forecasting urban water demand via wavelet-denoising and neural network models. Case study: city of Syracuse, Italy. Water Resources Management. Vol. 26. Iss. 12 p. 3539–3558.
  • CASTRO-FILHO C., LOURENÇO A., GUIMARAES M.F., FONSECA I.C.B. 2002. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil and Tillage Research. Vol. 65 p. 45–51.
  • COTCHING W.E., COOPER J., SPARROW L.A., MCCORKELL B.E., ROWLEY W. 2002. Effects of agricultural management on Dermosols in northern Tasmania. Australian Journal of Soil Research. Vol. 40. Iss. 1 p. 65–79.
  • DIAZ-ZORITA M., PERFECT E., GROVE J.H. 2002. Disruptive methods for assessing soil structure. Soil and Tillage Research. Vol. 64 p. 3–22.
  • EYNARD A., SCHUMACHER T.E., LINDSTROM M.J., MALO D.D., Kohl R.A. 2004. Wettability of soil aggregates from cultivated and uncultivated Ustolls and Usterts. Australian Journal of Soil Research. Vol. 42. Iss. 2 p. 163–170.
  • GAJIĆ B., TAPANAROVA A., TOMIĆ Z., KRESOVIĆ B., VUJOVIĆ D., PEJIĆ B. 2013. Land use effects on aggregation and erodibility of Luvisols on undulating slopes. Australian Journal of Crop Science. Vol. 7. Iss. 8 p. 1198–1204.
  • GAJIĆ B., ŽIVKOVIĆ M. 2006. Aggregate composition and stability of structural aggregates of non-calcareous rendzinas in Eastern Serbia. Journal of Agricultural Sciences. Vol. 51. Iss. 2 p. 141–150.
  • HAIDARY A., AMIRI B.J., ADAMOWSKI J., FOHRER N., NAKANE K. 2013. Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resources Management. Vol. 27 p. 2217–2229.
  • HALBE J., PAHL-WOSTL C., SENDZIMIR J., ADAMOWSKI J. 2013. Towards adaptive and integrated management paradigms to meet the challenges of water governance. Water Science and Technology: Water Supply. Vol. 67 p. 2651–2660.
  • HEVIA G.G., MENDÉZ M.J., BUSCHIAZZO D.E. 2007. Tillage affects soil aggregation parameters linked with wind erosion. Geoderma. Vol. 140 p. 90–96.
  • HORTENSIUS D., WELLING R. 1996. International standardization of soil quality measurements. Communications in Soil Science and Plant Analysis. Vol. 27 p. 387–402.
  • HUSSAIN M.A., ABBAS S., ANSARI M.R.K. 2010. Forecast models for urban extreme temperatures: Karachi region as a case study. The Nucleus. Vol. 47. Iss. 4 p. 301–311.
  • INAM A., ADAMOWSKI J., HALBE J., PRASHER S. 2015. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: A case study in the Rechna Doab watershed, Pakistan. Journal of Environmental Management. Vol. 152 p. 251–267.
  • KEMPER D.W., ROSENAU R.C. 1986. Aggregate stability and size distribution. In: Methods of soil analysis. 1. Ed. A. Klute. Am. Soc. Agron. Madison. WI. 9 p. 425–442.
  • KOLINJIVADI V, ADAMOWSKI J, KOSOY N. 2014a. Juggling multiple dimensions in a complex socioecosystem: The issue of targeting in payments for ecosystem services. GeoForum. 58: 1–13.
  • KOLINJIVADI V., ADAMOWSKI J., KOSOY N. 2014b. Recasting payments for ecosystem services (PES) in water resource management: A novel institutional approach. Ecosystem Services. Vol. 10 p. 144–154.
  • LAL R. 1994. Soil erosion research methods. Soil and Water Conservation Society (Ankeny). 3rd edn. Delray Beach. St. Lucie Press pp. 340.
  • LAL R. 2001. Soil degradation by erosion. Land Degradation and Development. Vol. 12. Iss. 6 p. 519–539.
  • LE BISSONNAIS Y., BLAVET D., DE NONI G., LAURENT J.Y., ASSELINE J., CHENU C. 2007. Erodibility of Mediterranean vineyard soils: Relevant aggregate stability methods and significant soil variables. European Journal of Soil Science. Vol. 58 p. 188–195.
  • LEGOUT C., LEGUEDOIS S., LE BISSONNAIS Y. 2005. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurement. European Journal of Soil Science. Vol. 56 p. 225–237.
  • LÜTZOW M., KÖGEL-KNABNER I., EKSCHMITT K., MATZNER E., GUGGENBERGER G., MARSCHNER B., FLESSA H. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions. European Journal of Soil Science. Vol. 57 p. 426–445.
  • MARTENS D.A., REEDY T.E., LEWIS D.T. 2003. Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology. Vol. 10 p. 65–78.
  • MUNKHOLM L.J. 2002. Soil Fragmentation and Friability. Effects of Soil Water and Soil Management. Ph.D. Thesis. Danish Institute of Agricultural Sciences, Department of Crop Physiology and Soil Science.
  • NALLEY D., ADAMOWSKI J., KHALIL B. 2012. Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). Journal of Hydrology. Vol. 475 p. 204–228.
  • NALLEY D., ADAMOWSKI J., KHALIL B., OZGA-ZIELINSKI B. 2013. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Journal of Atmospheric Research. Vol. 132/133 p. 375–398.
  • NOURANI V., BAGHANAM A., ADAMOWSKI J., KISI O. 2014. Applications of hybrid wavelet-artificial intelligence models in hydrology: A review. Journal of Hydrology. Vol. 514 p. 358–377.
  • OADES J.M. 1984. Soil organic matter and structural stability: mechanism and implications for management. Plant Soil. Vol. 76 p. 319–337.
  • PICCOLO A., MBAGWU J.S.C. 1999. Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Science Society of America Journal. Vol. 63 p. 1801–1810.
  • PINGALE S., KHARE D., JAT M., ADAMOWSKI J. 2014. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India. Journal of Atmospheric Research. Vol. 138 p. 73–90.
  • PINHEIRO E.F.M., PEREIRA M.G., ANJOS L.H.C. 2004. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil and Tillage Research. Vol. 77 p. 79–84.
  • RATHINASAMY M., ADAMOWSKI J., KHOSA R. 2014. Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method. Journal of Hydrology. Vol. 507 p. 186–200.
  • ROBERSON E.B., SARIG S., FIRESTONE M.K. 1991. Cover crop management of polysacchar-ides-mediated aggregation in an orchard soil. Soil Science Society of America Journal. Vol. 55 p. 734–739.
  • SAADAT H., ADAMOWSKI J., BONNELL R., SHARIFI F., NAMDAR M., ALE-EBRAHIM S. 2011. Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. Journal of Photogrammetry and Remote Sensing. Vol. 66 p. 608–619.
  • SHEIN E.V., UMAROVA A.B., MILANOVSKIY E.Y., SOKOLOVA I.V. 2010. Preferential water flow, local soil biota and structure degradation in chernozem 20 years after landreclamation. International Agrophysics. Vol. 24 p. 75–80.
  • SPSS Inc. 2007. SYSTAT version 16.0: Statistics. Chicago. Illinois.
  • STRAITH D., ADAMOWSKI J., REILLY K. 2014. Exploring the attributes, strategies and contextual knowledge of champions of change in the Canadian water sector. Canadian Water Resources Journal. Vol. 39. Iss. 3 p. 255–269.
  • TAGAR A., CHANGYING J., DING Q., ADAMOWSKI J. 2014. Soil failure patterns and draft as influenced by consistency limits: An evaluation of the remolded soil cutting test. Journal of Soil and Tillage Research. Vol. 137 p. 58–66.
  • TAGAR A., CHANGYING J., ADAMOWSKI J. 2015a. Finite element simulation of soil failure patterns under soil bin and field testing conditions. Journal of Soil Tillage Research. Vol. 145 p. 157–170.
  • TAGAR A., CHANGYING J., QISHUO D., ADAMOWSKI J., CHANDIO F., MARI I. 2015b. Quantification of soil structures created after different failure patterns as influenced by soil consistency limits. Geoderma. Vol. 261 p. 124–132.
  • TISDALL J.M., OADES J.M. 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science. Vol. 33 p. 141–163.
  • TIWARI M., ADAMOWSKI J. 2014. Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resources Research. Vol. 49. Iss. 10 p. 6486–6507.
  • VAN BAVEL C.H.M. 1949. Mean weight diameter of soil aggregates as a statistical index of aggregation. Soil Science Society of America Journal. Vol. 14 p. 20–23.
  • WALKLEY A., BLACK I.A. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science. Vol. 63 p. 251–263.
  • WOHLENBERG E.V., REICHERT J.M., REINERT D.J., BLUME E. 2004. Dinâmica da agregação de um solo francoarenosoemcincosistemas de culturasemrotação e emsucessão. Revista Brasileira de Ciência do Solo. Vol. 28 p. 891–900.
  • ZHANG Y., GHALY A.E., BINGXI L. 2012. Physical properties of wheat straw varieties cultivated under different climatic and soil conditions in three continents. American Journal of Engineering and Applied Sciences. Vol. 5. Iss. 2 p. 98–106.
  • ZHANG B., HORN R. 2001. Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma. Vol. 99 p. 123–145.
  • ZHENG F.L., YANG Q.K., WANG Z.L. 2004. Water erosion prediction model. Research of Soil and Water Conservation. Vol. 11. Iss. 4 p. 13–24.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c2d47ad-c8fe-40af-af87-82c4264ae3d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.