PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment and recognition of pre and co seismic electromagnetic signatures from magnetotelluric data: a case study from Koyna–Warna seismoactive region, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Continuously monitored magnetotelluric (MT) time series data were used to identify the short-term earthquake co-seismic and pre-seismic electromagnetic phenomenon. The co-seismic behavior of the MT time series data recorded at 15 Hz sampling frequency is analyzed for the earthquake that occurred on November 24, 2007, of Mw =4.6. The wavelet analysis of the MT time series data shows signifcant enhancement at 3–6 Hz frequency band in the scalogram during the earthquake in comparison with pre- and post-time. The signifcant enhancement in the scalogram is related to the onset of the main shock of the earthquake. In this paper, we have also shown the precursory signatures of several earthquake magnitudes (Mw) ranging from 3.9 to 4.9 and the focal depth extending from 5 to 10 km mainly dominated by normal and strike-slip faulting. The spectral polarization ratio technique was implemented on these events to identify the precursory signatures. A few days before the earthquake, a signifcant anomaly was identifed for most of the earthquakes using this technique. This prominent anomaly is correlated with Dst index, which provides information about the ionosphere and magnetosphere responses in the presence of the solar wind and interplanetary magnetic feld. We inferred the unusual behavior prior to the earthquake is related to the precursory signature, but not related to the solar-terrestrial efect. The complex tectonic settings in the study region suggest that both electrokinetic and seismic dynamo mechanisms are the probable mechanisms playing an important role in generation of co- and pre-seismic electromagnetic signals.
Czasopismo
Rocznik
Strony
1--15
Opis fizyczny
Bibliogr. 79 poz.
Twórcy
  • CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad 500007, India
  • CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad 500007, India
  • Kurukshetra University, Kurukshetra 136119, India
  • CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad 500007, India
autor
  • CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad 500007, India
  • CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad 500007, India
Bibliografia
  • 1. Abdul Azeez K, Manoj C, Veeraswamy K, Harinarayana T (2009) Co-seismic EM signals in magnetotelluric measurement—a case study during Bhuj earthquake (26th January 2001), India. Earth Planets Space 61:973–981
  • 2. Addison PS (2018) Introduction to redundancy rules: the continuous wavelet transform comes of age. Philos Trans R Soc A 376:20170258. https://doi.org/10.1098/rsta.2017.0258
  • 3. Balasco M, Lapenna V, Romano G, Siniscalchi A, Stabile TA, Telesca L (2014) Electric and magnetic field changes observed during a seismic swarm in Pollino area (southern Italy). Bull Seismol Soc Am 104:1289–1298
  • 4. Balasco M, Lapenna V, Romano G, Siniscalchi A, Stabile TA, Telesca L (2015) The Pollino 2011–2012 seismic swarm (southern Italy): first results of the ML = 3.6 aftershock recorded by co-located electromagnetic and seismic stations. Bollettino di Geofisica Teorica ed Applicata 56:203–210
  • 5. Bansal AR, Rao NP, Peng Z, Shashidhar D, Meng X (2018) Remote triggering in the Koyna–Warna reservoir-induced seismic zone, Western India. J Geophys Res Solid Earth 123:2318–2331
  • 6. Borovsky JE, Shprits YY (2017) Is the Dst index sufficient to define all geospace storms? J Geophys Res Space Phys 122:11–543
  • 7. Chen CH, Liu JY, Lin PY, Yen HY, Hattori K, Liang WT, Chen YI, Yeh YH, Zeng X (2010) Pre-seismic geomagnetic anomaly and earthquake location. Tectonophysics 489:240–247
  • 8. Contoyiannis Y, Potirakis SM, Eftaxias K, Hayakawa M, Schekotov A (2016) Intermittent criticality revealed in ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (Mw = 9). Phys A Stat Mech Appl 452:19–28
  • 9. Currie JL, Waters CL (2014) On the use of geomagnetic indices and ULF waves for earthquake precursor signatures. J Geophys Res Space Phys 119:992–1003
  • 10. Dudkin F, Rawat G, Arora BR, Korepanov V, Leontyeva O, Sharma AK (2010) Application of polarization ellipse technique for analysis of ULF magnetic fields from two distant stations in Koyna–Warna seismoactive region, West India. Nat Hazards Earth Syst Sci 10:1513
  • 11. Enomoto Y (1994) Anomalous electric signals detected before recent earthquakes in Japan near Tsukuba. In: Hayakawa M, Fujinawa Y (eds.) Electromagnetic Phenomena Related to Earthquake Prediction, Tokyo, Japan, pp 261–270
  • 12. Enomoto Y, Hashimoto H (1992) Transient electrical activity accompanying rock under indentation loading. Tectonophysics 211:337–344
  • 13. Febriani F, Han P, Yoshino C, Hattori K, Nurdiyanto B, Effendi N, Maulana I, Gaffar E (2014) Ultra low frequency (ULF) electromagnetic anomalies associated with large earthquakes in Java Island, Indonesia by using wavelet transform and detrended fluctuation analysis. Nat Hazards Earth Syst Sci 14:789
  • 14. Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res Space Phys 99:5771–5792
  • 15. Guo J, Li W, Yu H, Liu Z, Zhao C, Kong Q (2015) Impending ionospheric anomaly preceding the Iquique Mw8. 2 earthquake in Chile on 2014 April 1. Geophys Suppl Mon Not R Astron Soc 203:1461–1470
  • 16. Gupta HK (1983) Induced seismicity hazard mitigation through water level manipulation at Koyna, India: a suggestion. Bull Seismol Soc Am 73:679–682
  • 17. Gupta HK (2002) A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Sci Rev 58:279–310
  • 18. Gupta HK, Rao RU, Srinivasan R, Rao GV, Reddy GK, Dwivedy KK, Banerjee DC, Mohanty R, Satyasaradhi YR (1999) Anatomy of surface rupture zones of two stable continental region earthquakes, 1967 Koyna and 1993 Latur, India. Geophys Res Lett 26(13):1985–1988
  • 19. Gupta HK, Mandal P, Rastogi BK (2002) How long will triggered earthquakes at Koyna, India continue?. Curr Sci 82(2):202–210
  • 20. Gupta H, Koyna NS, Committee W (2011) Deep scientific drilling to study reservoir-triggered Earthquakes in Koyna, Western India. Sci Drill 12:53–54
  • 21. Gupta H, Nayak S, Ellsworth W, Rao YJB, Rajan S, Bansal BK, Purnachandra Rao N, Roy S, Arora K, Mohan R, Tiwari VM (2014) Probing reservoir-triggered earthquakes in Koyna, India, through scientific deep drilling. Sci Drill 18:5–9
  • 22. Gupta HK, Rao NP, Roy S, Arora K, Tiwari VM, Patro PK, Satyanarayana HVS, Shashidhar D, Mallika K, Vyasulu VA, Goswami D, Vyas D, Ravi G, Srinivas KNSSS, Srihari M, Mishra S, Dubey CP, Raju DCV, Borah U, Reddy KC, Babu N, Rohilla S, Dhar U, Sen M, Rao YJB, Bansal BK, Nayak S (2015) Investigations related to scientific deep drilling to study reservoir triggered earthquakes at Koyna, India. Int J Earth Sci 104:1511–1522
  • 23. Gupta HK, Arora K, Rao NP, Roy S, Tiwari VM, Patro PK, Satyanarayana HVS, Shashidhar D, Mahato CR, Srinivas KNSSS, Srihari M (2017) Investigations of continued reservoir triggered seismicity at Koyna, India. Geol Soc Lond Spec Publ 445:151–188
  • 24. Hattori K (2004) ULF geomagnetic changes associated with large earthquakes. Terr Atmos Ocean Sci 15(3):329–360
  • 25. Han P (2009) Principal component analysis of geomagnetic diurnal variation associated with earthquakes: case study of the M 6.1 Iwateken Nairiku Hokubu earthquake. Chin J Geophys 52:1556–1563
  • 26. Han P, Hattori K, Huang Q, Hirano T, Ishiguro Y, Yoshino C, Febriani F (2011) Evaluation of ULF electromagnetic phenomena associated with the 2000 Izu Islands earthquake swarm by wavelet transform analysis. Nat Hazards Earth Syst Sci 11:965
  • 27. Han P, Hattori K, Xu G, Ashida R, Chen CH, Febriani F, Yamaguchi H (2015) Further investigations of geomagnetic diurnal variations associated with the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). J Asian Earth Sci 114:321–326
  • 28. Harinarayana T, Narayanan M, Murthy DN, Gupta AK, Babu N (2010) Stationary magnetotelluric monitoring system for earthquake research in Koyna region, Maharashtra. Curr Sci 99:1027–1030
  • 29. Hayakawa M, Hobara Y (2010) Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat Nat Hazards Risk 1(2):115–155
  • 30. Hayakawa M, Kawate R, Molchanov OA, Yumoto K (1996) Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys Res Lett 23:241–244
  • 31. Hayakawa M, Hattori K, Ohta K (2007) Monitoring of ULF (ultra-low-frequency) geomagnetic variations associated with earthquakes. Sensors 7:1108–1122
  • 32. Heki K (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys Res Lett 38(17):1–5
  • 33. Heki K, Enomoto Y (2015) Mw dependence of the preseismic ionospheric electron enhancements. J Geophys Res Space Phys 120:7006–7020
  • 34. Honkura Y, Matsushima M, Oshiman N, Baris S, Ito A, Iio Y, Isikara AM (2002) Small electric and magnetic signals observed before the arrival of seismic wave. Earth Planets Space 54(12):e9–e12
  • 35. Huang Q (2002) One possible generation mechanism of co-seismic electric signals. Proc Jpn Acad Ser B 78(7):173–178
  • 36. Ida Y, Hayakawa M (2006) Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. Nonlinear Process Geophys Eur Geosci Union 13:409–412
  • 37. Ida Y, Yang D, Li Q, Sun H, Hayakawa M (2008) Detection of ULF electromagnetic emissions as a precursor to an earthquake in China with an improved polarization analysis. Nat Hazards Earth Syst Sci 8(4): 775–777. https://doi.org/10.5194/nhess-8-775-2008
  • 38. Johnston MJ, Sasai Y, Egbert GD, Kappler K (2005) Seismomagnetic effects from the long-awaited September 28, 2004, M6 Parkfield earthquake. AGUFM 2005:T43E – T51
  • 39. Kappler KN, Morrison HF, Egbert GD (2010) Long-term monitoring of ULF electromagnetic fields at Parkfield, California. J Geophys Res Solid Earth 115:B04406. https://doi.org/10.1029/2009JB006421
  • 40. Kopytenko YA, Ismaguilov VS, Hattori K, Hayakawa M (2006) Determination of hearth position of a forthcoming strong EQ using gradients and phase velocities of ULF geomagnetic disturbances. Phys Chem Earth Parts A/B/C 31:292–298
  • 41. Lui ATY, Najmi AH (1997) Time-frequency decomposition of signals in a current disruption event. Geophys Res Lett 24:3157–3160
  • 42. Matsushima M, Honkura Y, Oshiman N, Baris S, Tunçer MK, Tank SB, Celik C, Takahashi F, Nakanishi M, Yoshimura R, Pektas R (2002) Seismoelectromagnetic effect associated with the Izmit earthquake and its aftershocks. Bull Seismol Soc Am 92:350–360
  • 43. Menvielle M, Berthelier A (1991) The K-derived planetary indices: description and availability. Rev Geophys 29:415–432. https://doi.org/10.1029/91RG00994
  • 44. Molchanov OA, Hayakawa M (1995) Generation of ULF electromagnetic emissions by microfracturing. Geophys Res Lett 22:3091–3094
  • 45. Molchanov OA, Hayakawa M (1998) On the generation mechanism of ULF seismogenic electromagnetic emissions. Phys Earth Planet Inter 105(3–4):201–210
  • 46. Nagao T, Orihara Y, Yamaguchi T, Takahashi I, Hattori K, Noda Y, Sayanagi K, Uyeda S (2000) Co-seismic geoelectric potential changes observed in Japan. Geophys Res Lett 10:1535–1538
  • 47. Nagao T, Enomoto Y, Fujinawa Y, Hata M, Hayakawa M, Huang Q, Izutsu J, Kushida Y, Maeda K, Oike K, Uyeda S (2002) Electromagnetic anomalies associated with 1995 Kobe earthquake. J Geodyn 33:401–411
  • 48. Narain H, Gupta H (1968) Koyna earthquake. Nature 217:1138–1139
  • 49. Nitsan U (1977) Electromagnetic emission accompanying fracture of quartz-bearing rocks. Geophys Res Lett 4:333–336
  • 50. Ogawa T, Utada H (2000) Coseismic piezoelectric effects due to a dislocation: 1. An analytic far and early-time field solution in a homogeneous whole space. Phys Earth Planet Inter 121(3–4):273–288
  • 51. Parrot M, Berthelier JJ, Lebreton JP, Sauvaud JA, Santolik O, Blecki J (2006) Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys Chem Earth Parts A/B/C 31:486–495
  • 52. Patro PK, Borah UK, Babu GA, Veeraiah B, Sarma SVS (2017) Ground electrical and electromagnetic studies in Koyna–Warna region, India. J Geol Soc India 90:711–719
  • 53. Petraki E, Nikolopoulos D, Nomicos C, Stonham J, Cantzos D, Yannakopoulos P, Kottou S (2015) Electromagnetic pre-earthquake precursors: Mechanisms, data and models—a review. J Earth Sci Clim Change 6(1):1
  • 54. Pisa D, Nemec F, Santolík O, Parrot M, Rycroft M (2013) Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity. J Geophys Res Space Phys 118:5286–5295
  • 55. Potirakis SM, Hayakawa M, Schekotov A (2017) Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (Mw = 9): discriminating possible earthquake precursors from space-sourced disturbances. Nat Hazards 85:59–86
  • 56. Potirakis SM, Contoyiannis Y, Koulouras GE, Melis NS, Eftaxias K, Nomicos C (2019) Pre-earthquake electromagnetic emissions with critical and tricritical behavior before the recent Durrës (Albania)(Mw= 6.4, 26-11-2019) and Chania (Greece)(Mw= 6.1, 27-11-2019) earthquakes. arXiv:1912.05955
  • 57. Rao NP, Shashidhar D (2016) Periodic variation of stress field in the Koyna–Warna reservoir triggered seismic zone inferred from focal mechanism studies. Tectonophysics 679:29–40
  • 58. Rao NP, Shashidhar D (2017) Earthquake focal mechanism studies in Koyna–Warna region in the last five decades—current understanding on tectonics and seismogenesis. J Geol Soc India 90:684–691
  • 59. Rao NP, Roy S, Arora K (2013) Deep scientific drilling in Koyna, India-brain-storming workshop on geological investigations 19–20, March 2013. Geol Soc India 81:722–723
  • 60. Rawat G, Chauhan V, Dhamodharan S (2016) Fractal dimension variability in ULF magnetic field with reference to local earthquakes at MPGO, Ghuttu. Geomat Nat Hazards Risk 7:937–1947
  • 61. Ren H, Wen J, Huang Q, Chen X (2015) Electrokinetic effect combined with surface-charge assumption: a possible generation mechanism of coseismic EM signals. Geophys J Int 200(2):837–850
  • 62. Rodriguez-Perez Q, Zuniga FR, Marquez-Ramírez VH, Corbo-Camargo F (2020) Seismoelectromagnetic effects associated with the 15 February 2017 Veracruz earthquake (MW = 4.8). Geophys J Int 222:1405–1422
  • 63. Roy S, Akkiraju V, Goswami D, Vyas D, Gugulothu R, Nemalikanti PR, Sen MK, Gupta HK (2013a) First results from borehole investigations at Koyna, India, site of proposed scientific deep drilling to study reservoir triggered seismicity. AGUFM 2013:S33D-2484
  • 64. Roy S, Rao NP, Akkiraju VV, Goswami D, Sen M, Bansal BK, Nayak S (2013b) Granitic basement below Deccan traps unearthed by drilling in the Koyna Seismic zone, western India. J Geol Soc India 81:289–290
  • 65. Sarma SVS, Patro BPK, Harinarayana T, Veeraswamy K, Sastry RS, Sarma MVC (2004) A magnetotelluric (MT) study across the Koyna seismic zone, western India: evidence for block structure. Phys Earth Planet Inter 142:23–36
  • 66. Shashidhar D, Satyanarayana HVS, Mahato CR, Mallika K, Purnachandra Rao N, Gupta HK (2016) Borehole seismic network at Koyna, India. Seismol Res Lett 87:661–667
  • 67. Shashidhar D, Mallika K, Mahato C, Maity BS, Sudheer K, Satyanarayana HVS, Rao NP, Raghavan RV, Sarma ANS, Murthy YVVBSN, Shankar UG (2019) A catalogue of earthquakes in the Koyna–Warna region, Western India (2005–2017). J Geol Soc India 93:7–24
  • 68. Stacey FD (1964) The seismomagnetic effect. Pure Appl Geophys 58:1–22
  • 69. Stanica DA, Stanica D (2019) ULF pre-seismic geomagnetic anomalous signal related to Mw 8.1 Offshore Chiapas Earthquake, Mexico on 8 September 2017. Entropy 21(1):29
  • 70. Sun YC, Uyeshima M, Ren H, Huang Q, Aizawa K, Tsukamoto K, Kanda W, Seki K, Kishita T, Ohminato T, Watanabe A (2019) Numerical simulations to explain the coseismic electromagnetic signals: a case study for a M 5.4 aftershock of the 2016 Kumamoto earthquake. Earth Planets Space 71:1–24
  • 71. Telesca L, Hattori K (2007) Non-uniform scaling behavior in ultra-low-frequency (ULF) earthquake-related geomagnetic signals. Phys A Stat Mech Appl 384:522–528
  • 72. Telesca L, Lapenna V, Macchiato M, Hattori K (2008) Investigating non-uniform scaling behavior in ultra low frequency (ULF) earthquake-related geomagnetic signals. Earth Planet Sci Lett 268:219–224
  • 73. Tiwari VM, Rao MV, Mishra DC (2001) Density inhomogeneities beneath Deccan Volcanic Province, India as derived from gravity data. J Geodyn 31:1–17
  • 74. Ujihara N, Yoshimori H, Yasuo O (2004) Electric and magnetic field variations arising from the seismic dynamo effect for aftershocks of the M 7.1 earthquake of 26 May 2003 off Miyagi Prefecture, NE Japan. Earth Planets Space 56:115–123
  • 75. Uyeda S, Hayakawa M, Nagao T, Molchanov O, Hattori K, Orihara Y, Gotoh K, Akinaga Y, Tanaka H (2002) Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc Natl Acad Sci 99:7352–7355
  • 76. Xu G, Han P, Huang Q, Hattori K, Febriani F, Yamaguchi H (2013) Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). J Asian Earth Sci 77:59–65
  • 77. Yamazaki KI (2011) Enhancement of co-seismic piezomagnetic signals near the edges of magnetization anomalies in the Earth’s crust. Earth Planets Space 63(2):111–118
  • 78. Yusof KA, Hamid NSA, Abdullah M, Ahadi S, Yoshikawa A (2019) Assessment of signal processing methods for geomagnetic precursor of the 2012 M 6.9 Visayas, Philippines earthquake. Acta Geophys 67:1297–1306
  • 79. Zlotnicki J, Le Mouël JL, Kanwar R, Yvetot P, Vargemezis G, Menny P, Fauquet F (2006) Ground-based electromagnetic studies combined with remote sensing based on Demeter mission: a way to monitor active faults and volcanoes. Planet Space Sci 54(5):541–557
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c2d285a-6088-4da6-9cf9-c3a8feec0607
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.