Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Monitoring of uterine contractile activity enables to control the progress of labor. Automated detection of contractions is an integral part of the signal analysis implemented in computer- aided fetal surveillance system. Comparison of four algorithms for automated detection of uterine contractions in the signal of uterine mechanical activity is presented. Three algorithms are based generally on analysis of the frequency distribution of signal values. The fourth method relies on analyzing the rate of changes of the uterine activity signal. The reference data in form of beginning and end of contraction episodes were provided by human experts. Obtained results show that all algorithms were capable to detect above 91% reference contractions, and less than 7% of recognized patterns were false. Two algorithms can be distinguished as providing a higher performance expressed by the sensitivity of 95% and the positive predictive value of 97%. Such results could be obtained by optimization of contraction validation criteria.
Wydawca
Czasopismo
Rocznik
Tom
Strony
610--618
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Medical Technology and Equipment ITAM, Roosevelta 118, 41-800 Zabrze, Poland
autor
- Institute of Medical Technology and Equipment ITAM, Zabrze, Poland
autor
- Institute of Medical Technology and Equipment ITAM, Roosevelta 118, 41-800 Zabrze, Poland
autor
- Institute of Medical Technology and Equipment ITAM, Roosevelta 118, 41-800 Zabrze, Poland
autor
- Institute of Medical Technology and Equipment ITAM, Roosevelta 118, 41-800 Zabrze, Poland
autor
- Institute of Electronics, Silesian University of Technology, Gliwice, Poland
Bibliografia
- [1] Abdulhay EW, Oweis RJ, Alhaddad AM, Sublaban FN, Radwan MA, Almasaeed HM. Non-invasive fetal heart rate monitoring techniques: review article. Biomed Sci Eng 2014;2(3):53–67.
- [2] Dawes GS, Moulden M, Redman CWG. System 8000: computerized antenatal FHR analysis. J Perinatal Med 1991;19:47–51.
- [3] Pello LC, Rosevear SK, Dawes GS, Moulden M, Redman CWG. Computerized foetal heart analysis in labour. J Obstet Gynaecol 1991;78:602–10.
- [4] Ayres-De-Campos D, Bernardes J, Garrido A, Marques-De-Sa J, Pereira-Leite L. SisPorto 2.0: a program for automated analysis of cardiotocograms. J Maternal-Fetal Neonatal Med 2000;9:311–8.
- [5] Chu TW, Su CJ. Automated data collection and analysis for ubiquitous and continuous electronic fetal monitoring. Gen Med 2015;3(2):1–9. http://dx.doi.org/10.4172/2327-5146.1000172.
- [6] Czabanski R, Wrobel J, Jezewski J, Leski J, Jezewski M. Efficient evaluation of fetal wellbeing during pregnancy using methods based on statistical learning principles. J Med Imag Health Inf 2015;5(6):1327–36.
- [7] Khandoker AH, Kimura Y, Ito T, Sato N, Okamura K, Palaniswami M. Antepartum non-invasive evaluation of opening and closing timings of the cardiac valves in fetal cardiac cycle. Med Biol Eng Comput 2009;47:1075–82.
- [8] Smyth CN. The guard-ring tocodynamometer. J Obstet Gynaecol Br Commonwealth 1957;64:59–66.
- [9] Kitlas A, Oczeretko E, Laudanski P, Laudanski T. Signal processing methods in the analysis of the uterine contractility. IFMBE Proceedings of 6th World Congress of Biomechanics Singapore 2010;31:679–82.
- [10] Kitlas A, Oczeretko E, Swiatecka J, Borowska M, Laudanski T. Uterine contraction signals – application of the linear synchronization measures. Eur J Obstet Gynecol Reprod Biol 2009;144S:61–4.
- [11] Arduini D, Rizzo G, Rinaldo D, Capponi A, Fittipaldi G, Giannini F, et al. Effects of Braxton–Hicks contractions on fetal heart rate variations in normal and growth-retarded fetuses. Gynecol Obstet Investig 1994;38:177–82.
- [12] Kupka T, Jezewski J, Matonia A, Horoba K, Wrobel J. Timing events in Doppler ultrasound signal of fetal heart activity. Proc. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2004. pp. 337–40.
- [13] Georgoulas G, Stylios Ch, Groumpos P. Feature extraction and classification of fetal heart rate using wavelet analysis and support vector machines. Int J Artif Intell Tools 2006;15 (3):411–32.
- [14] Guijarro-Berdinas B, Alonso-Betanzos AO, Fontenla- Romero O. Intelligent analysis and pattern recognition in cardiotocographic signals using a tightly coupled hybrid system. Artif Intell 2002;136:1–27.
- [15] Jezewski J, Roj D, Wrobel J, Horoba K. A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed Eng Online 2011;10. http://dx.doi.org/10.1186/1475-925X-10-92/ [Published October 14 2011. article no 92].
- [16] Rotariu C, Pasarica A, Andruseac G, Costin H, Nemescu D. Automatic analysis of the fetal heart rate variability and uterine contractions. International Conference and Exposition on Electrical and Power Engineering (EPE 2014).; 2014. pp. 553–6.
- [17] Bakker P, Van Geijn HP. Uterine activity: implications for the condition of the fetus. J Perinatal Med 2008;36:30–7.
- [18] Czabanski R, Jezewski M, Wrobel J, Horoba K, Jezewski J. Neuro-fuzzy approach to the classification of fetal cardiotocograms. IFMBE Proc 14th Nordic Baltic Conference on Biomedical Engineering and Medical Physics Riga 2008;20:446–9.
- [19] Jezewski M, Wrobel J, Labaj P, Leski J, Henzel N, Horoba K, et al. Some practical remarks on neural networks approach to fetal cardiotocograms classification. Proc 29th Int Conf IEEE/EMBS; 2007. pp. 5170–3.
- [20] Garfield RE, Chwalisz K, Shi L, Olson G, Saade GR. Instrumentation for the diagnosis of term and preterm labour. J Perinatal Med 1998;26:413–36.
- [21] Euliano TY, Nguyen M, Darmanjian TS, Mcgorray SP, Euliano N, Onkala A, et al. Monitoring uterine activity during labor: a comparison of 3 methods. Am J Obstet Gynecol 2013;208(66). e1-66.e6.
- [22] Chourasia VS, Tiwari AK, Review A. Comparative analysis of recent advancements in fetal monitoring techniques. Crit Rev Biomed Eng 2008;36(5–6):335–73.
- [23] Chudacek V, Spilka J, Janku P, Koucky M, Lhotska L, Huptych M. Automatic evaluation of intrapartum fetal heart rate recordings: a comprehensive analysis of useful features. Physiol Measur 2011;32(8):1347–60.
- [24] Steer PJ, Carter MC, Beard RW. Normal levels of active contraction area in spontaneous labor. Br J Obstet Gynaecol 1984;91:211–9.
- [25] Georgieva A, Payne SJ, Redman CWG. Computerised electronic foetal heart rate monitoring in labour: automated contraction identification. Med Biol Eng Comput 2009;47:1315–20.
- [26] Phillips GF, Calder AA. Units for evaluation of uterine contractility. Br J Obstet Gynaecol 1987;94:236–41.
- [27] Rooth G, Huch A, Huch R. Guidelines for the use of fetal monitoring. Int J Gynecol Obstet 1987;25:159–67.
- [28] Jezewski J, Horoba K, Matonia A, Wrobel J. Quantitative analysis of contraction patterns in electrical activity signal of pregnant uterus as an alternative to mechanical approach. Physiol Measur 2005;26:753–67.
- [29] Zietek J, Sikora J, Horoba K, Matonia A, Jezewski J, Magnucki J, et al. Mechanical and electrical uterine activity. Part I. Contractions monitoring/in Polish/. Ginekol Polska 2008;79 (11):791–7.
- [30] Zietek J, Sikora J, Horoba K, Matonia A, Jezewski J, Magnucki J, et al. Mechanical and electrical uterine activity. Part II. Contractions parameters’’/in Polish/. Ginekol Polska 2008;79(11):798–804.
- [31] Horoba K, Wrobel J, Roj D, Kupka T, Matonia A, Jezewski J. Ensuring the real time signal transmission using GSM/ Internet technology for remote fetal monitoring. In: Pietka E, Kawa J, editors. Information technologies in Biomedicine Advances in soft computing series, vol 47. Springer Verlag; 2008. p. 291–8.
- [32] Wrobel J, Matonia A, Horoba K, Jeżewski J, Czabanski R, Pawlak A, et al. Pregnancy telemonitoring with smart control of algorithms for signal analysis. J Med Imag Health Inf 2015;5(6):1302–10.
- [33] Cazares S. Automated identification of abnormal patterns in the intrapartum cardiotocogram.[PhD dissertation] UK: University of Oxford; 2002.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c2d240d-b6ae-4ba0-a196-0012448d0d36