PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sleep is a physiological activity and human body restores itself from various diseases during sleep. It is necessary to get sufficient amount of sleep to have sound physiological and mental health. Nowadays, due to our present hectic lifestyle, the amount of sound sleep is reduced. It is very difficult to decipher the various stages of sleep manually. Hence, an automated systemmay be useful to detect the different stages of sleep. This paper presents a novel method for the classification of sleep stages based on RR-time series and electroencephalogram (EEG) signal. The method uses iterative filtering (IF) based multiresolution analysis approach for the decomposition of RR-time series into intrinsic mode functions (IMFs). The delta (d), theta (u), alpha (a), beta (b) and gamma (g) waves are evaluated from EEG signal using band-pass filtering. The recurrence quantification analysis (RQA) and dispersion entropy (DE) based features are evaluated from the IMFs of RR-time series. The dispersion entropy and the variance features are evaluated from the different bands of EEG signal. The RR-time series features and the EEG features coupled with the deep neural network (DNN) are used for the classification of sleep stages. The simulation results demonstrate that our proposed method has achieved an average accuracy of 85.51%, 94.03% and 95.71% for the classification of 'sleep vs wake', 'light sleep vs deep sleep' and 'rapid eye movement (REM) vs non-rapid eye movement (NREM)' sleep stages.
Twórcy
  • Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, India
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia
Bibliografia
  • [1] Winfree AT. Human body clocks and the timing of sleep. Nature 1982;297(5861):23–7.
  • [2] Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 2004;1(3):e62.
  • [3] Tripathy R. Application of intrinsic band function technique for automated detection of sleep apnea using HRV and EDR signals. Biocybernetics and Biomedical Engineering; 2017.
  • [4] Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 1997;18(5):716–38.
  • [5] Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus C, Vaughn B. The AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications, Darien, Illinois. American Academy of Sleep Medicine; 2012.
  • [6] Carskadon MA, Dement WC. Normal human sleep: an overview. Princ Pract Sleep Med 2005;4:13–23.
  • [7] Agarwal R, Gotman J. Computer-assisted sleep staging. IEEE Trans Biomed Eng 2001;48(12):1412–23.
  • [8] Acharya UR, Chua EC-P, Chua KC, Min LC, Tamura T. Analysis and automatic identification of sleep stages using higher order spectra. Int J Neural Syst 2010;20(06):509–21.
  • [9] Boostani R, Karimzadeh F, Nami M. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput Methods Programs Biomed 2017;140:77–91.
  • [10] Aboalayon KAI, Faezipour M, Almuhammadi WS, Moslehpour S. Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation. Entropy 2016;18(9):272.
  • [11] Hassan AR, Bhuiyan MIH. Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting. Comput Methods Programs Biomed 2017;140:201–10.
  • [12] Prucnal M, Polak AG. Effect of feature extraction on automatic sleep stage classification by artificial neural network. Metrol Meas Syst 2017;24(2):229–40.
  • [13] da Silveira TL, Kozakevicius AJ, Rodrigues CR. Singlechannel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain. Med Biol Eng Comput 2017;55(2):343–52.
  • [14] Sharma M, Goyal D, Pv A, Acharya UR. An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput Biol Med 2018. http://dx.doi.org/10.1016/j.compbiomed.2018.04.025.
  • [15] Ebrahimi F, Setarehdan S-K, Ayala-Moyeda J, Nazeran H. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals. Comput Methods Programs Biomed 2013;112(1):47–57.
  • [16] Adnane M, Jiang Z, Yan Z. Sleep-wake stages classification and sleep efficiency estimation using single-lead electrocardiogram. Expert Syst Appl 2012;39(1):1401–13.
  • [17] Scherz WD, Fritz D, Velicu OR, Seepold R, Madrid NM. Heart rate spectrum analysis for sleep quality detection. EURASIP J Embed Syst 2017;2017(1):26.
  • [18] Kim J, Lee J, Shin M. Sleep stage classification based on noise-reduced fractal property of heart rate variability. Proc Comput Sci 2017;116:435–40.
  • [19] Bajaj V, Pachori RB. Automatic classification of sleep stages based on the time-frequency image of EEG signals. Comput Methods Programs Biomed 2013;112(3):320–8.
  • [20] Hsu Y-L, Yang Y-T, Wang J-S, Hsu C-Y. Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing 2013;104:105–14.
  • [21] Flexer A, Gruber G, Dorffner G. A reliable probabilistic sleep stager based on a single eeg signal. Artif Intell Med 2005;33(3):199–207.
  • [22] Jo HG, Park JY, Lee CK, An SK, Yoo SK. Genetic fuzzy classifier for sleep stage identification. Comput Biol Med 2010;40(7):629–34.
  • [23] Otzenberger H, Simon C, Gronfier C, Brandenberger G. Temporal relationship between dynamic heart rate variability and electroencephalographic activity during sleep in man. Neurosci Lett 1997;229(3):173–6.
  • [24] Ako M, Kawara T, Uchida S, Miyazaki S, Nishihara K, Mukai J, et al. Correlation between electroencephalography and heart rate variability during sleep. Psychiatry Clin Neurosci 2003;57(1):59–65.
  • [25] Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Seminars in neurology, 25. 2005. pp. 117–29. Copyright© 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.
  • [26] Nagai M, Hoshide S, Kario K. Sleep duration as a risk factor for cardiovascular disease – a review of the recent literature. Curr Cardiol Rev 2010;6(1):54–61.
  • [27] Wolk R, Kara T, Somers VK. Sleep-disordered breathing and cardiovascular disease. Circulation 2003;108(1):9–12.
  • [28] Miglis MG. Sleep and neurologic disease. Academic Press; 2017.
  • [29] Rolink J, Kutz M, Fonseca P, Long X, Misgeld B, Leonhardt S. Recurrence quantification analysis across sleep stages. Biomed Signal Process Control 2015;20:107–16.
  • [30] Lin L, Wang Y, Zhou H. Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv Adapt Data Anal 2009;1(04):543–60.
  • [31] Sharma R, Pachori RB, Upadhyay A. Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput Appl 2017;28(10):2959–78.
  • [32] Lv F, Han M, Qiu T. Remote sensing image classification based on ensemble extreme learning machine with stacked autoencoder. IEEE Access 2017;5:9021–31.
  • [33] Planinšič P, Gleich D. Temporal change detection in SAR images using log cumulants and stacked autoencoder. IEEE Geoscience and Remote Sensing Letters; 2018.
  • [34] Zhang J, Wu Y. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network. Biomedical Engineering/Biomedizinische Technik; 2017.
  • [35] Zhang J, Wu Y. A new method for automatic sleep stage classification. IEEE Trans Biomed Circuits Syst 2017;11(5):1097–110.
  • [36] Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Program Biomed 2018;161:1–13.
  • [37] Ichimaru Y, Moody G. Development of the polysomnographic database on CD-ROM. Psychiatry Clin Neurosci 1999;53(2):175–7.
  • [38] Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985;3:230–6.
  • [39] Cicone A, Liu J, Zhou H. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl Comput Harm Anal 2016;41(2):384–411.
  • [40] Penzel T, Kantelhardt JW, Lo C-C, Voigt K, Vogelmeier C. Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology 2003;28(S1):S48.
  • [41] Acharya UR, Bhat S, Faust O, Adeli H, Chua EC-P, Lim WJE, et al. Nonlinear dynamics measures for automated EEG-based sleep stage detection. Eur Neurol 2015;74(5-6):268–87.
  • [42] Acharya R, Faust O, Kannathal N, Chua T, Laxminarayan S. Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed 2005;80(1):37–45.
  • [43] Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys Rep 2007;438(5–6):237–329.
  • [44] Marwan N. A historical review of recurrence plots. Eur Phys J Spec Top 2008;164(1):3–12.
  • [45] Eckmann J-P, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhys Lett 1987;4(9):973.
  • [46] Yang H. Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans Biomed Eng 2011;58(2):339–47.
  • [47] Rostaghi M, Azami H. Dispersion entropy: a measure for time-series analysis. IEEE Signal Process Lett 2016;23(5):610–4.
  • [48] Subha DP, Joseph PK, Acharya R, Lim CM. EEG signal analysis: a survey. J Med Syst 2010;34(2):195–212.
  • [49] Aboalayon KA, Ocbagabir HT, Faezipour M. Efficient sleep stage classification based on EEG signals. 2014 IEEE Long Island Systems, Applications and Technology Conference (LISAT). IEEE; 2014. p. 1–6.
  • [50] Shin H-C, Orton MR, Collins DJ, Doran SJ, Leach MO. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data. IEEE Trans Pattern Anal Mach Intell 2013;35(8):1930–43.
  • [51] Sharma L, Tripathy R, Dandapat S. Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans Biomed Eng 2015;62 (7):1827–37.
  • [52] Vanoli E, Adamson PB, Pinna GD, Lazzara R, Orr WC, et al. Heart rate variability during specific sleep stages: a comparison of healthy subjects with patients after myocardial infarction. Circulation 1995;91(7):1918–22.
  • [53] Žemaitytė D, Varoneckas G, Sokolov E. Heart rhythm control during sleep. Psychophysiology 1984;21(3):279–89.
  • [54] Hauri P. The sleep disorders. National Sleep Foundation; 2013, Chapter 1: Normal Sleep.
  • [55] Hayet W, Slim Y. Sleep-wake stages classification based on heart rate variability. 2012 5th international conference on biomedical engineering and informatics (BMEI). IEEE; 2012. p. 996–9.
  • [56] Werteni H, Yacoub S, Ellouze N. An automatic sleep-wake classifier using ECG signals. Int J Comput Sci Issues (IJCSI) 2014;11(4):84.
  • [57] Rossow AB, Salles EOT, Côco KF. Automatic sleep staging using a single-channel EEG modeling by Kalman filter and HMM. 2011 ISSNIP biosignals and biorobotics conference (BRC). IEEE; 2011. p. 1–6.
  • [58] Redmond S, Heneghan C. Electrocardiogram-based automatic sleep staging in sleep disordered breathing. 2003 Computers in cardiology. IEEE; 2003. p. 609–12.
  • [59] Song I-H, Lee D-S, Kim SI. Recurrence quantification analysis of sleep electoencephalogram in sleep apnea syndrome in humans. Neurosci Lett 2004;366(2):148–53.
  • [60] Ng AK, Guan C. Impact of obstructive sleep apnea on sleep-wake stage ratio. 2012 annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2012. p. 4660–3.
  • [61] Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput 2006;44 (12):1031–51.
  • [62] Kannathal N, Choo ML, Acharya UR, Sadasivan P. Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 2005;80(3):187–94.
  • [63] Chua KC, Chandran V, Acharya UR, Lim CM. Application of higher order statistics/spectra in biomedical signals – a review. Med Eng Phys 2010;32(7):679–89.
  • [64] Jabloun F, Cetin AE, Erzin E. Teager energy based feature parameters for speech recognition in car noise. IEEE Signal Process Lett 1999;6(10):259–61.
  • [65] Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med 2018;94:19–26.
  • [66] Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci 2017;415:190–8.
  • [67] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med 2017;89:389–96.
  • [68] Acharya UR, Fujita H, Sudarshan VK, Oh SL, Adam M, Tan JH, et al. Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal. Knowl Based Syst 2017;132:156–66.
  • [69] Acharya UR, Fujita H, Lih OS, Adam M, Tan JH, Chua CK. Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl Based Syst 2017;132:62–71.
  • [70] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 2017. http://dx.doi.org/10.1016/j.compbiomed.2017.09.017 (in press).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c26ddb2-e2c0-4765-b93f-46d2d37d0ec8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.