PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential Risks and Their Analysis of the Apparel & Textile Industry in Turkey: A Quality-Oriented Sustainability Approach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Potencjalne zagrożenia i ich analiza dla przemysłu odzieżowego i tekstylnego w Turcji. Podejście zorientowane na jakość z zachowaniem zasad zrównoważonego rozwoju
Języki publikacji
EN
Abstrakty
EN
The most significant issues in businesses within the scope of manufacturing and services are the sustainability of production quality, setting quality standards and reducing the waste amount during the manufacturing process. From this point of view, the aim of this study is to provide a better quality level of supplying households’ apparel needs while reducing the environmental, economic and social problems of the sustainable supply chain of the apparel sector and extending the lifecycle of apparel. The importance of risk analyses and calculations in the applications of industrial sectors plays a vital role in evaluating the factors of sustainability dimensions. In order to address this risk analysis in this research, quality-oriented implementations are applied to determine the failure modes and effect analysis (FMEA). The significant factors are determined via Pareto Analysis (PA) to control and prevent potential errors and failures in the manufacturing systems of the textile industry. To achieve the aim of this study, the methodology of the research focuses on discovering failures of negative impact based on the primary factor degrees with the computing of risk priority numbers (RPNs) in the manufacturing process of the textile-apparel industry in Turkey. According to the ranking of the RPNs, FMEA application and PA enable to decrease the effects of negative factors and risks as well as the waste amount of the apparel-textile industry, as well as to increase the lifecycle of apparel and products.
PL
Najważniejszymi zagadnieniami w biznesie w zakresie produkcji i usług są: trwałość jakości produkcji, nabywanie standardów jakości i zmniejszanie ilości odpadów przy wytwarzaniu produktach. W związku z tym spostrzeżeniem, celem przeprowadzonych badań było zapewnienie lepszej jakości zaspokojenia potrzeb w zakresie odzieży dla gospodarstw domowych przy jednoczesnym zmniejszeniu problemów środowiskowych, ekonomicznych i społecznych związanych ze zrównoważonym łańcuchem dostaw w sektorze odzieżowym i wydłużeniem cyklu życia odzieży. Znaczenie analiz ryzyka i obliczeń w zastosowaniach sektorów przemysłowych odgrywa istotną rolę w ocenie czynników związanych z wymiarami zrównoważonego rozwoju. Aby uwzględnić tę analizę ryzyka w badaniach zastosowano implementację zorientowaną na jakość w celu określenia trybów awarii i analizy skutków (FMEA), a istotne czynniki określono za pomocą analizy Pareto (PA) w celu kontroli i zapobiegania prawdopodobnym błędom i awariom systemów produkcji przemysłu włókienniczego. Metodologia badania skoncentrowana była na wykryciu wad o negatywnym wpływie na proces produkcji przemysłu tekstylno-odzieżowego w Turcji, w oparciu o podstawowe współczynniki z obliczaniem liczb priorytetowych ryzyka (RPN). Zgodnie z rankingiem RPN, aplikacje FMEA i PA zapewniają zmniejszenie negatywnych czynników, zmniejszenie ryzyka, wsparcie wydłużonego cyklu życia produktów, zmniejszenie ilości odpadów w przemyśle odzieżowym i włókienniczym oraz wydłużenie cyklu życia odzieży.
Rocznik
Strony
30--42
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Marmara – Anadolu University
autor
  • Marmara University, Faculty of Engineering, Mechanical Engineering Department Istanbul 34722, Turkey
Bibliografia
  • 1. Erdil A, Tacgin E. A holistic approach of sustainability to economics, ethics, environment, and quality of life cycle time of production. Global Journal of Business, Economics and Management: Current Issues 2017; 7: 49-61. http://sproc.org/ ojs/index.php/gjbem.  
  • 2. Guiltinan J. Creative Destruction and Destructive Creations: Environmental Ethics and Planned Obsolescence. Journal of Business Ethics. 2009;89: 19-28, Springer. https://doi:10.1007/ s10551-008-9907.  
  • 3. Miao CH. Planned obsolescence and monopoly undersupply. Information Economics and Policy 2011; 23, pp. 51-58. DOI: 10.1016/j.infoecopol.2010.03.003.  
  • 4. Boland M. Water and the Environment. Forbes, 2001, 168, 6: 60-62.  
  • 5. Slade G. Made to Break: Technology and Obsolescence in America-Cell Phones and E-Waste. Cell Phones and E-Waste. Harvard University Press Paper Back Edition, Cambridge, Massachusetts, 2006, 264.  
  • 6. Greene JP. Sustainable Plastics: Environmental Assessments of Biobased, Biodegradable, and Recycled Plastics. John Wiley & Sons, Inc., Canada, 2014, pp.2-12, ISBN 978-1-118-10481-1.  
  • 7. Esteves F, Santos J, Anunciacao P. Sustainability in the information society: a proposal of information systems requirements in view of the DPOBE model for organizational sustainability. Procedia Technology 2012; 5: 599-606. https:// doi: 10.1016/j.protcy.2012.09.066.  
  • 8. Basurko OC, Mesbahi E. Methodology for the sustainability assessment of marine technologies. Journal of Cleaner Production 2014; 68: 155-164. https:// doi.org/10.1016/j.jclepro.2012.01.022.  
  • 9. Maxwell D. Sustainable Clothing Action Plan, Department for Environment- Lead Sustainable Clothing Roadmap, Food and Rural Affairs, 2008, pp. 2-11.
  • 10. https://glasaaward.org/wp-content/uploads/2014/01/Clothing-Actionplan.pdf
  • 11. Climate Challenges facing the Clothing Sector. Master of Science in Innovation and Entrepreneurship, Dr. Dorothy Maxwell, DEFRA Sustainable Clothing Roadmap, 2007, pp. 1-25.
  • 12. Defra. A framework for pro-environmental behaviours. London: Department for Environment, Food and Rural Affairs Report, 2008, pp.109.
  • 13. https://www.gov.uk/government/uploads/system/uploads/attachment_data/ file/69277/pb13574-behaviours-report-080110.pdf. (accessed on 10.05.2015)
  • 14. OECD. OECD Environmental Strategy for the First Decade of the 21st Century, 2001. http://www.oecd.org/environment/ environmentalindicatorsmodellingandoutlooks/1863539.pdf. (accessed on 10.06.2015).
  • 15. Turkey’s Sustainable Development Report: Claiming the Future, Ministry of Development, June 2012, Ankara, 1-77.
  • 16. www.surdurulebilirkalkinma.gov.tr.
  • 17. https://sustainabledevelopment.un.org/ content/documents/853turkey.pdf, (accessed on 10.05.2015).
  • 18. Allwood J M, Laursen SE, Rodríguez C M, Bocken NMP. Well dressed? The present and future sustainability of clothing and textiles in the United Kingdom, Technical Annex, University of Cambridge Institute for Manufacturing, 2006, pp. 3-56. ISBN 1- 902546-52-0.
  • 19. Global Sustainable Development Report, http://sustainabledevelopment. un.org/globalsdreport/ (accessed on 10.06.2015).
  • 20. Yang K, Basem S, EI-Haik BS. Design for Six Sigma, McGraw Hill Professional, 2003, p. 624.
  • 21. Estorilio C, Posso RK. The reduction of irregularities in the use of process FMEA. International Journal of Quality & Reliability Management 2010; 27, pp. 721-733. https://doi. org/10.1108/02656711011054579.
  • 22. Akın B. Implementation of ISO 9000 in Business, Failure Mode and Effects Analysis (FMEA). Bilim Teknik Publishing, Istanbul, 1998, p. 182.
  • 23. Slinger M. To practise QFD with success requires a new approach to product design. Kontinuert Forbedring, 1992, pp. 20-21.
  • 24. Slack N, Chambers S, Johnston R. Operations Management. 2nd edition, Harlow- Financial Times, Prentice-Hall, Inc., 2001, pp. 86-138.
  • 25. Hekmatpanah M, Fadavinia A. The Evaluation and Application of FMEA in Sepahan Oil Co, World Academy of Science, Engineering and Technology. International Journal of Industrial and Manufacturing 2011; pp. 769-774. scholar.waset. org/1307-6892/7613.
  • 26. Paparella S. Failure mode and effects analysis: a useful tool for risk identification and injury prevention. Journal of Emergency Nursing 2004; 33, pp. 367-71. https://doi.org/10.1016/j. jen.2007.03.009
  • 27. Sinha PR, Whitmann LE, Malzan D. Methodology to mitigate supplier risk in an aerospace supply chain. Supply Chain Management of International Journal 1996; pp. 154-168. https://doi. org/10.1108/13598540410527051.
  • 28. Kumar S, Dieveney E, Dieveney A. Reverse Logistic Process Control measures for the Pharmaceutical Industry Supply Chain. International Journal of Productivity and Performance Management 2009; 58: 188-204. https://doi. org/10.1108/17410400910928761.
  • 29. Van Leeuwen JF, Nauta MJ, de-Kaste D. Odekerken-Rombouts, YMCF., Oldenhof, MT., Vredenbert, MJ., Barends, DM. Risk Analysis by FMEA as an Element of Analytical Validation. Journal of Pharmaceutical and Biomedical Analysis 2009; 50: 1085-1087. https:// doi: 10.1016/j. jpba.2009.06.049.
  • 30. Chuang PT. Incorporating disservice analysis to enhance perceived service quality. Industrial Management & Data Systems 2010; 110: 1-22. https://doi. org/10.1108/02635571011030033.
  • 31. Ashi M, Farith AI, Isaac I. Investigation of Foundry Emissions Using Six Sigma. International Journal of Research and Scientific Innovation 2015; 2, http://www. rsisinternational.org/Issue17/87-93.pdf. (accessed on 10.06.2015). ISSN 23212705.
  • 32. Chin KS, Wang YM, Poon GKK, Yang JB. Failure mode and effects analysis using a group-based evidential reasoning approach. Computers & Operations Research 2009; 36: 768-1779. https:// doi.org/10.1016/j.cor.2008.05.002.
  • 33. Tsarouhas PH, Arampatzaki D. Application of Failure Modes and Effects Analysis (FMEA) of a Ceramic Tiles Manufacturing Plant, 1st Olympus international conference on supply chains proceedings, 1-2 October, Katerini, Greece, 2010, pp. 1-17.
  • 34. http://www.teicm.gr/logistics/images/logisticsdocs/icsc2010/fullabstracts/7_2_ICSC2010_017_Tsarouhas_Arampatzaki.pdf. (10.06.2015).
  • 35. Liu H-C, Liu L, Liu N. Risk Evaluation Approaches in Failure Mode and Effects Analysis: A Literature Review. Expert Systems with Applications 2013; 40: 828-838. https://doi.org/10.1016/j. eswa.2012.08.010.
  • 36. Wang Y-M, Chin K-S, Poon GKK, Yang J-B. Risk Evaluation in Failure Mode and Effects Analysis Using Fuzzy Weighted Geometric Mean. Expert Systems with Applications Part 1 2009; 36: 1195-1207. https://doi:10.1016/j.eswa.2007.11.028.
  • 37. Hekmatpanah CM, Shahin A; Ravichandran N. The application of FMEA in the oil industry in Iran: The case of four litre oil canning process of Sepahan Oil. African Journal of Business Management 2011; 5: 3019-3027. https:// doi:10.5897/ AJBM10.1248 ISSN 1993-8233.
  • 38. Xiao N, Huang H-Z, Li Y, He L, Jin T. Multiple Failure Modes Analysis and Weighted Risk Priority Number Evaluation in FMEA. Engineering Failure Analysis 2011; 18: 1162-1170. https:// doi:10.1016/j.engfailanal.2011.02.004.
  • 39. Su X, Deng Y, Mahadevan S, Bao Q. An Improved Method for Risk Evaluation in Failure Modes and Effects Analysis of Aircraft Engine Rotor Blades. Engineering Failure Analysis 2012; 26: 164174. https://doi.org/10.1016/j.engfailanal.2012.07.009.
  • 40. Van Leeuwen JF, Nauta MJ, de-Kaste D, Odekerken-Rombouts YMCF, Oldenhof MT, Vredenbert MJ, Barends DM. Risk Analysis by FMEA as an Element of Analytical Validation. Journal of Pharmaceutical and Biomedical Analysis 2009; 50: 1085-1087. https://doi.org/10.1016/j. jpba.2009.06.049.
  • 41. Sankar NR, Prabhu BS. Modified approach for prioritization of failures in a system failure mode and effects analysis. International Journal of Quality & Reliability Management 2001; 18: 324-35. https:// doi.org/10.1108/02656710110383737.
  • 42. Pillay A, Wang J. Modified failure mode and effects analysis using approximate reasoning. Reliability Engineering & System Safety 2003; 79: 69-85. https://doi. org/10.1016/S0951-8320(02)00179-5.
  • 43. Franceschini F, Maurizio Galetto M. A New Approach for Evaluation of Risk Priorities of Failure Modes in FMEA. International Journal of Production Research 2001; 39: 2991-3002. https://doi. org/10.1080/00207540110056162.
  • 44. Chang D-S, Sun KLP. Applying DEA to enhance assessment capability of FMEA. International Journal of Quality & Reliability Management 2009, 26: 629-643. https://doi. org/10.1108/02656710910966165.
  • 45. Erbıyık E, Can E, Delici Y, Karaboga K. Potential Risks Associated with The Route Selection in Railway Construction Projects, 2nd International Symposium on Railway Systems Engineering in Processing Book (ISERSE’13), 2013, Karabuk, Turkey.
  • 46. Zairi M, Duggan R. Best Practice-Process Innovation Management in Slinger M (1992). To practise QFD with success requires a new approach to product design. Kontinuert Forbedring, Butterworth-Heinemann, 1999, pp. 104-139.
  • 47. Başlıgil, H. (1997-1998). Unpublished Management Information System Lecture Notes, Faculty of Mechani
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c21230a-04a9-4cfc-8856-1e2ca970d827
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.