Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper applies time-frequency analysis to a 3-day time series with a sampling interval of 1 second of the changes in E, N and H coordinates of three permanent GNSS stations: WRON, KR10, and KRUR in Krakow, as well as differences between them. Time-frequency analysis was conducted using a Fourier transform band-pass filter, which separates time series into frequency components. By analyzing the differences between these coordinates, it was observed that the WRON station shows a systematic error in the form of a regular wideband oscillation with a period of 75 minutes, whose amplitude varies from approximately 1 to 3 mm with a period of about 1 day. In the horizontal plane, this oscillation takes the shape of a flattened ellipse with a semi-major axis oriented in the northwest direction. The most probable cause of this regular oscillation is the day-to-day variability of the multipath signal environment.
Czasopismo
Rocznik
Tom
Strony
61--68
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Department of Environmental Engineering and Geodesy, Faculty of Production Engineering, University of Life Sciences in Lublin, 13 Akademicka Str, 20-950 Lublin, Poland
autor
- Department of Geodesy, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
Bibliografia
- 1. Axelrad, P., Comp, C., and MacDoran, P. (1994). Use of signal-to-noise ratio for multipath error correction in GPS differential phase measurements: methodology and experimental results. In Proceedings of the 7th international technical meeting of the Satellite Division of The Institute of Navigation (ION GPS 1994), Salt Lake City, UT, September 1994, pages 655-666.
- 2. Axelrad, P., Comp, C. J., and Macdoran, P. F. (1996). SNR-based multipath error correction for GPS differential phase. IEEE Transactions on Aerospace and Electronic Systems, 32(2):650-660, doi:10.1109/7.489508.
- 3. Baker, T. (1984). Tidal deformations of the Earth. Science Progress (1933-), pages 197-233.
- 4. Cai, C. and Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS solutions, 17:223-236, doi:10.1007/s10291-012-0273-9.
- 5. Dach, R., Böhm, J., Lutz, S., Steigenberger, P., and Beutler, G. (2011). Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis. Journal of geodesy, 85:75-91, doi:10.1007/s00190-010-0417-z.
- 6. Fuhrmann, T., Garthwaite, M. C., and McClusky, S. (2021). Investigating GNSS multipath effects induced by co-located Radar Corner Reflectors. Journal of Applied Geodesy,15(3):207-224, doi:10.1515/jag-2020-0040.
- 7. Han, J., Tu, R., Zhang, R., Fan, L., and Zhang, P. (2019). SNR-dependent environmental model: application in real-time GNSS landslide monitoring. Sensors, 19(22):5017, doi:10.3390/s19225017.
- 8. Hunegnaw, A. and Teferle, F. N. (2022). Evaluation of the multipath environment using electromagnetic-absorbing materials at continuous GNSS stations. Sensors, 22(9):3384, doi:10.3390/s22093384.
- 9. Kazmierski, K., Hadas, T., and Sośnica, K. (2018). Weighting of multi-GNSS observations in real-time precise point positioning. Remote Sensing, 10(1):84, doi:10.3390/rs10010084.
- 10. Kim, H.-Y. (2013). Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative dentistry & endodontics, 38(1):52-54, doi:10.5395/rde.2013.38.1.52.
- 11. Kosek, W. (1995). Time variable band pass filter spectra of real and complex-valued polar motion series. Arti¬cial Satellites, 30(1):27-43.
- 12. Kouba, J. (2003). Measuring seismic waves induced by large earthquakes with GPS. Studia Geophysica et Geodaetica, 47:741-755, doi:10.1023/A:1026390618355.
- 13. Lau, L. and Cross, P. (2005). Use of signal-to-noise ratios for real-time GNSS phase multipath mitigation. In Proc. of National Navigation Conference NAV05, The Royal Institute of Navigation, 1-3 November 2005, London, volume 1.
- 14. Leick, A., Rapoport, L., and Tatarnikov, D. (2015). GPS satellite surveying. John Wiley & Sons.
- 15. Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., and Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89(6):607-635, doi:10.1007/s00190-015-0802-8.
- 16. Mohamed, A. S., Doma, M. I., and Rabah, M. M. (2019). Study the effect of surrounding surface material types on the multipath of GPS signal and its impact on the accuracy of positioning determination. American Journal of Geographic Information System, 8(5):199-205, doi:10.5923/j.ajgis.20190805.01.
- 17. Parvazi, K., Farzaneh, S., and Safari, A. (2020). Role of the RLS-VCE-estimated stochastic model for improvement of accuracy and convergence time in multi-GNSS precise point positioning. Measurement, 165:108073, doi:10.1016/j.measurement.2020.108073.
- 18. Peppa, I. and Psimoulis, P. (2023). Detection of GNSS antenna oscillatory motion and multipath conditions via exploitation of multipath-induced SNR variations. GPS Solutions, 27(3):117, doi:10.1007/s10291-023-01432-6.
- 19. Peppa, I., Psimoulis, P., and Meng, X. (2019). Modelling antenna vibrations using the Signal-to-Noise Ratio (SNR) of GNSS signals. In Proceeding of 4th joint international symposium on deformation monitoring (JISDM) Athe, 15-17 May 2019, Athens, Greece.
- 20. Piras, M., Roggero, M., and Fantino, M. (2009). Crustal deformation monitoring by GNSS: network analysis and case studies. In Advances in Geosciences: Volume 13: Solid Earth (SE), pages 87-103. World Scientific, doi:10.1142/9789812836182_0007.
- 21. Popiński, W. (2009). On application of the Fourier transform band pass filtering technique. Artificial Satellites, 44(4):149-160, doi:10.2478/v10018-009-0026-3.
- 22. Popiński, W. and Kosek, W. (1995). The Fourier transform band pass filter and its application for polar motion analysis. Artificial Satellites, 30(1):9-25.
- 23. Prochniewicz, D. and Grzymala, M. (2021). Analysis of the impact of multipath on Galileo system measurements. Remote Sensing, 13(12):2295, doi:10.3390/rs13122295.
- 24. Ren, Y., Lian, L., and Wang, J. (2021). Analysis of seismic deformation from global three-decade GNSS displacements: implications for a three-dimensional Earth GNSS velocity field. Remote Sensing, 13(17):3369, doi:10.3390/rs13173369.
- 25. Richardson, T., Hill, C., Moore, T., and Toor, P. (2016). Analysis of multi-constellation GNSS signal quality. In Proceedings of the 2016 International Technical Meeting of The Institute of Navigation, Monterey, California, January 2016, pages 631-638. doi:10.33012/2016.13394.
- 26. Siejka, Z. (2018). Validation of the accuracy and con vergence time of Real Time Kinematic results using a single Galileo navigation system. Sensors, 18(8):2412, doi:10.3390/s18082412.
- 27. Singleton, R. (1969). An algorithm for computing the mixed radix fast Fourier transform. IEEE Transactions on audio and electroacoustics, 17(2):93-103, doi:10.1109/TAU.1969.1162042.
- 28. Špánik, P. and Hefty, J. (2017). Multipath detection with the combination of SNR measurements - example from urban environment. Geodesy and Cartography, 66(2), doi:10.1515/geocart-2017-0020.
- 29. Strode, P. R. and Groves, P. D. (2016). GNSS multipath detection using three-frequency Signal-to-Noise measurements. GPS solutions, 20:399-412, doi:10.1007/s10291-015-0449-1.
- 30. West, S. G., Finch, J. F., and Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In Hoyle, R., editor, Structural equation modeling: Concepts, issues and applications, pages 56-75. Newbery Park, CA: Sage.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c1f3de4-eefe-4f1f-b0b2-af354cfa4185