Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, neural networks are presented to solve the inverse kinematic models of continuum robots. Firstly, the forward kinematic models are calculated for variable curvature continuum robots. Then, the forward kinematic models are implemented in the neural networks which present the position of the continuum robot’s end effector. After that, the inverse kinematic models are solved through neural networks without setting up any constraints. In the same context, to validate the utility of the developed neural networks, various types of trajectories are proposed to be followed by continuum robots. It is found that the developed neural networks are powerful tool to deal with the high complexity of the non-linear equations, in particular when it comes to solving the inverse kinematics model of variable curvature continuum robots. To have a closer look at the efficiency of the developed neural network models during the follow up of the proposed trajectories, 3D simulation examples through Matlab have been carried out with different configurations. It is noteworthy to say that the developed models are a needed tool for real time application since it does not depend on the complexity of the continuum robots' inverse kinematic models.
Wydawca
Czasopismo
Rocznik
Tom
Strony
595--613
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Université of Blida 1, Laboratoire des systèmes électriques et télécommande, Faculty of Technology, Blida, Algeria
autor
- Université of Blida 1, Laboratoire des systèmes électriques et télécommande, Faculty of Technology, Blida, Algeria
autor
- University of Larbi Ben M’hidi, Faculty of Science and Applied Sciences, Oum El Bouaghi, Algeria
autor
- University of Sciences and Technology Houari Boumediene, Laboratoire des systèmes électriques et télécommande, Faculty of Electrical Engineering, Algiers, Algeria
autor
- Haute Ecole Bruxelles, Ecole Supérieure d’Informatique, Brussels, Belgium
Bibliografia
- [1] D. Trivedi, C.D. Rahn, W.M. Kier, and I.D. Walker. Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3):99–117, 2008. doi: 10.1080/11762320802557865.
- [2] G. Robinson and J.B.C. Davies. Continuum robots – a state of the art. In Proceedings 1999 IEEE International Conference on Robotics and Automation, volume 4, pages 2849–2854, 1999. doi: 10.1109/ROBOT.1999.774029.
- [3] I.D. Walker. Continuous backbone “continuum” robot manipulators. International Scholarly Research Notices, 2013:726506, 2013. doi: 10.5402/2013/726506.
- [4] H.-S. Yoon and B.-J. Yi. Development of a 4-DOF continuum robot using a spring backbone. The Journal of Korea Robotics Society, 3(4):323–330, 2008.
- [5] M. Li, R. Kang, S. Geng, and E. Guglielmino. Design and control of a tendon-driven continuum robot. Transactions of the Institute of Measurement and Control, 40(11):3263–3272, 2018. doi: 10.1177/0142331216685607.
- [6] G. Gao, H. Wang, J. Fan, Q. Xia, L. Li, and H. Ren. Study on stretch-retractable single-section continuum manipulator. Advanced Robotics, 33(1):1–12, 2019. doi: 10.1080/01691864.2018.1554507.
- [7] C. Laschi, B. Mazzolai, V. Mattoli, M. Cianchetti, and P. Dario. Design of a biomimetic robotic octopus arm. Bioinspiration & Biomimetics, 4(1):15006, 2009. doi: 10.1088/1748- 3182/4/1/015006.
- [8] F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi. A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspiration & Biomimetics, 7(2):25006, 2012. doi: 10.1088/1748-3182/7/2/025006.
- [9] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi. Dynamic model of a multibending soft robot arm driven by cables. IEEE Transactions on Robotics, 30(5):1109–1122, 2014. doi: 10.1109/TRO.2014.2325992.
- [10] Y. Peng, Y. Liu, Y. Yang, N. Liu, Y. Sun, Y. Liu, H. Pu, S. Xie, and J. Luo. Development of continuum manipulator actuated by thin McKibben pneumatic artificial muscle. Mechatronics, 60:56–65, 2019. doi: 10.1016/j.mechatronics.2019.05.001.
- [11] G. Gao, H. Ren, Q. Xia, H. Wang, and L. Li. Stretched backboneless continuum manipulator driven by cannula tendons. Industrial Robot, 45(2):237–243, 2018. doi: 10.1108/IR-06-2017-0124.
- [12] R.J. Webster III and B.A. Jones. Design and kinematic modeling of constant curvature continuum robots: A review. The International Journal of Robotics Research, 29(13):1661–1683, 2010. doi: 10.1177/0278364910368147.
- [13] S. Mosqueda, Y. Moncada, C. Murrugarra, and H. León-Rodriguez. Constant curvature kinematic model analysis and experimental validation for tendon driven continuum manipulators. In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics ICINCO (2), volume 2, pages 211–218, 2018. doi: 10.5220/0006913502110218.
- [14] A. Ghoul, K. Kara, M. Benrabah, and M.L. Hadjili. Optimized nonlinear sliding mode control of a continuum robot manipulator. Journal of Control, Automation and Electrical Systems, pages 1–9, 2022. doi: 10.1007/s40313-022-00914-1.
- [15] C. Escande. Towards Modeling of a Class of Bionic Manipulator Robots. PhD Thesis, Lille, France, 2013.
- [16] T. Mahl, A. Hildebrandt, and O. Sawodny. A variable curvature continuum kinematics for kinematic control of the bionic handling assistant. IEEE Transactions on Robotics, 30(4):935– 949, 2014. doi: 10.1109/TRO.2014.2314777.
- [17] S. Djeffal, A. Amouri, and C. Mahfoudi. Kinematics modeling and simulation analysis of variable curvature kinematics continuum robots. UPB Scientific Bulletin, Series D: Mechanical Engineering, 83:28–42, 2021.
- [18] S. Djeffal, C. Mahfoudi, and A. Amouri. Comparison of three meta-heuristic algorithms for solving inverse kinematics problems of variable curvature continuum robots. In 2021 European Conference on Mobile Robots (ECMR), pages 1–6, 2021. doi: 10.1109/ECMR50962.2021.9568789.
- [19] O. Lakhal, A. Melingui, A. Shahabi, C. Escande, and R. Merzouki. Inverse kinematic modeling of a class of continuum bionic handling arm. In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pages 1337–1342, 2014. doi: 10.1109/AIM.2014.6878268.
- [20] D. Trivedi, A. Lotfi, and C.D. Rahn. Geometrically exact dynamic models for soft robotic manipulators. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1497–1502, 2007. doi: 10.1109/IROS.2007.4399446.
- [21] A. Amouri, C. Mahfoudi, A. Zaatri, O. Lakhal, and R. Merzouki. A metaheuristic approach to solve inverse kinematics of continuum manipulators. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 231(5):380– 394, 2017. doi: 10.1177/0959651817700779.
- [22] E. Shahabi and C.-H. Kuo. Solving inverse kinematics of a planar dual-backbone continuum robot using neural network. In B. Corves, P. Wenger, and M. Hüsing, editors, EuCoMeS 2018, pages 355–361. Springer, Cham, 2019. doi: 10.1007/978-3-319-98020-1_42.
- [23] T.G. Thuruthel, E. Falotico, M. Cianchetti, and C. Laschi. Learning global inverse kinematics solutions for a continuum robot. In V. Parenti-Castelli andW. Schiehlen, editors, ROMANSY 21 - Robot Design, Dynamics and Control, pages 47–54. Springer, Cham, 2016. doi: 10.1007/978-3-319-33714-2_6.
- [24] L. Jiajia, D. Fuxin, L. Yibin, L. Yanqiang, Z. Tao, and Z. Gang. A novel inverse kinematics algorithm using the Kepler oval for continuum robots. Applied Mathematical Modelling, 93:206–225, 2021. doi: 10.1016/j.apm.2020.12.014.
- [25] D.Y. Kolpashchikov, N.V. Laptev, V.V. Danilov, I.P. Skirnevskiy, R.A. Manakov, and O.M. Gerget. FABRIK-based inverse kinematics for multi-section continuum robots. In 2018 18th International Conference on Mechatronics-Mechatronika (ME), pages 1–8. IEEE, 2018.
- [26] R. Köker, C. Öz, T. Çakar, and H. Ekiz. A study of neural network based inverse kinematics solution for a three-joint robot. Robotics and Autonomous Systems, 49(3-4):227–234, 2004. doi: 10.1016/j.robot.2004.09.010.
- [27] R.Y. Putra, S. Kautsar, R.Y. Adhitya, M. Syai’in, N. Rinanto, I. Munadhif, S.T. Sarena, J. Endrasmono, and A. Soeprijanto. Neural network implementation for invers kinematic model of arm drawing robot. In 2016 International Symposium on Electronics and Smart Devices (ISESD), pages 153–157, 2016. doi: 10.1109/ISESD.2016.7886710.
- [28] N. Bigdeli, K. Afsar, B.I. Lame, and A. Zohrabi. Modeling of a five link biped robot dynamics using neural networks. Journal of Applied Sciences, 8(20):3612–3620, 2008.
- [29] Z. Bingul, H.M. Ertunc, and C. Oysu. Comparison of inverse kinematics solutions using neural network for 6r robot manipulator with offset. In 2005 ICSC Congress on Computational Intelligence Methods and Applications, page 5, 2005. doi: 10.1109/CIMA.2005.1662342.
- [30] X. Zhang, Y. Liu, D.T. Branson, C. Yang, J. S Dai, and R. Kang. Variable-gain control for continuum robots based on velocity sensitivity. Mechanism and Machine Theory, 168:104618, 2022. doi: 10.1016/j.mechmachtheory.2021.104618.
- [31] A. Liegeois. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12):868–871, 1977.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c180f0a-d962-4d7a-9cd8-063deee63066