PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variable Friction Coefficient Research on the Base of Motorbike Discbrake Assembly

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the research of the motorcycle braking process in real road conditions. The theoretical considerations of braking mechanics, construction of braking systems and friction phenomena that take place during motorcycle braking are presented. New and original concepts of acceleration and brake fluid pressure measuring systems are also submitted. The built measuring system was installed on a motorcycle and applied to experimental studies in order to investigate the variable friction coefficient. This original measuring system allows for recording values of pressure changes in the hydraulic braking system, acceleration in three axes and the temperature of the brake disc all at the same time. The obtained data allowed the calculations of several characteristics, e. g. motorcycle speed, brake power, braking distance and variable friction coefficient. As a result of this research, a special measuring system was prepared and a series of characteristics showed an interesting reflection of complex physical phenomena which motorbikes are subjected to during braking time. Information about variable friction coefficient obtained from energy based methods can be useful in theoretical investigation of friction phenomena.
Rocznik
Strony
71--84
Opis fizyczny
Bibliogr. 29., rys., schem., tab., wykr.
Twórcy
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management
Bibliografia
  • 1. Adamowicz, A. and Grzes, P. (2011). Analysis of disc brake temperature distribution during single braking under non-axisymmetric load. Applied Thermal Engineering, 31(6-7):1003–1012.
  • 2. Belhocine, A. and Bouchetara, M. (2012). Thermal analysis of a solid brake disc. Applied Thermal Engineering, 32:59–67.
  • 3. Cho, K. H., Cho, M. H., Kim, S. J., and Jang, H. (2008). Tribological properties of potassium titanate in the brake friction material; morphological effects. Tribology letters, 32(1):59–66.
  • 4. Cho, M. H., Kim, S. J., Kim, D., and Jang, H. (2005). Effects of ingredients on tribological characteristics of a brake lining: an experimental case study. Wear, 258(11-12):1682–1687.
  • 5. Gopal, P., Dharani, L. R., and Blum, F. D. (1995). Load, speed and temperature sensitivities of a carbon-fiber-reinforced phenolic friction material. Wear, 181:913–921.
  • 6. Gopal, P., Dharani, L. R., and Blum, F. D. (1996). Hybrid phenolic friction composites containing kevlar® pulp part 1. enhancement of friction and wear performance. Wear, 193(2):199–206.
  • 7. Gweon, J. H., Joo, B. S., and Jang, H. (2016). The effect of short glass fiber dispersion on the friction and vibration of brake friction materials. Wear, 362:61–67.
  • 8. Han, Y., Tian, X., and Yin, Y. (2008). Effects of ceramic fiber on the friction performance of automotive brake lining materials. Tribology Transactions, 51(6):779–783.
  • 9. Hwang, H., Jung, S., Cho, K., Kim, Y., and Jang, H. (2010). Tribological performance of brake friction materials containing carbon nanotubes. Wear, 268(3-4):519–525.
  • 10. Jang, H., Ko, K., Kim, S., Basch, R., and Fash, J. (2004). The effect of metal fibers on the friction performance of automotive brake friction materials. Wear, 256(3-4):406–414.
  • 11. Kim, S., Cho, M., Lim, D.-S., and Jang, H. (2001). Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear, 251(1-12):1484–1491.
  • 12. Kim, S. J. and Jang, H. (2000). Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribology international, 33(7):477–484.
  • 13. Laguna-Camacho, J., Juárez-Morales, G., Calderón-Ramón, C., Velázquez-Martínez, V., Hernández-Romero, I., Mendez-Mendez, J. V., and Vite-Torres, M. (2015). A study of the wear mechanisms of disk and shoe brake pads. Engineering Failure Analysis, 56:348–359.
  • 14. Lawrowski, Z. and Tribologia, T. (1993). Zużycie i smarowanie. Wydawnictwo Naukowe PWN, Warszawa.
  • 15. Lee, N.-J. and Kang, C.-G. (2015). The effect of a variable disc pad friction coefficient for the mechanical brake system of a railway vehicle. PloS one, 10(8):e0135459.
  • 16. Mahmoud, K. and Mourad, M. (2014). Influence of water, oil and dust on the performance of conventional and wedge disc brakes. International Journal of Vehicle Structures & Systems, 6(3):71.
  • 17. Obst, M., Kurpisz, D., Zalas, A., and Stachowski, M. (2015). Disc brake assembly test stand design and preliminary motorbike brake process indicators test. Machine Dynamics Research, 39(2).
  • 18. Ostermeyer, G. (2003). On the dynamics of the friction coefficient. Wear, 254(9):852–858.
  • 19. Straffelini, G., Verma, P. C., Metinoz, I., Ciudin, R., Perricone, G., and Gialanella, S. (2016). Wear behavior of a low metallic friction material dry sliding against a cast iron disc: Role of the heat-treatment of the disc. Wear, 348:10–16.
  • 20. Szczerek, M. and Wiśniewski, M. (2000). Tribologia i tribotechnika. Wydaw. Instytutu Technologii Eksploatacji.
  • 21. Vadivuchezhian, K., Sundar, S., and Murthy, H. (2011). Effect of variable friction coefficient on contact tractions. Tribology International, 44(11):1433–1442.
  • 22. Verma, P. C., Ciudin, R., Bonfanti, A., Aswath, P., Straffelini, G., and Gialanella, S. (2016). Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear, 346:56–65.
  • 23. Verma, P. C., Menapace, L., Bonfanti, A., Ciudin, R., Gialanella, S., and Straffelini, G. (2015). Braking pad-disc system: wear mechanisms and formation of wear fragments. Wear, 322:251–258.
  • 24. Wang, F., Gu, K.,Wang,W., Liu, Q., and Zhu, M. (2015). Study on braking tribological behaviors of brake shoe material under the wet condition. Wear, 342:262–269.
  • 25. Wang, W., Zhao, Y., Wang, Z., Hua, M., and Wei, X. (2016). A study on variable friction model in sheet metal forming with advanced high strength steels. Tribology International, 93:17–28.
  • 26. Wegner, T. (2009). Energetyczne modelowanie w nieliniowej mechanice materiałów i konstrukcji. Wydawnictwo Politechniki Poznańskiej.
  • 27. Xin, X., Xu, C. G., and Qing, L. F. (2007). Friction properties of sisal fibre reinforced resin brake composites. Wear, 262(5-6):736–741.
  • 28. Yevtushenko, A., Adamowicz, A., and Grzes, P. (2013). Three-dimensional FE model for the calculation of temperature of a disc brake at temperature-dependent coefficients of friction. International Communications in Heat and Mass Transfer, 42:18–24.
  • 29. Yevtushenko, A. and Grzes, P. (2012). Axisymmetric fea of temperature in a pad/disc brake system at temperature-dependent coefficients of friction and wear. International Communications in Heat and Mass Transfer, 39(8):1045–1053.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c16d09d-b2ad-4413-937c-84e63756fd83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.