PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling, identification and prediction of oil spill domains at port and sea water areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methods of oil spill domains determination are reviewed and a new method based on a probabilistic approach to the solution of this problem is recommended. A semi-Markov model of the process of changing hydro-meteorological conditions is constructed. To describe the oil spill domain central point position a two-dimensional stochastic process is used. Parametric equations of oil spill domain central point drift trend curve for different kinds of hydro-meteorological conditions are determined. The general model of oil spill domain determination for various hydro-meteorological conditions is proposed. Moreover, statistical methods of this general model unknown parameters estimation are proposed. These methods are presented in the form of algorithms giving successive steps which should be done to evaluate these unknown model parameters on the base of statistical data coming from experiments performed at the sea. Moreover, approximate expected stochastic prediction and Monte Carlo Simulation in real time prediction of the oil spill domain movement are proposed.
Rocznik
Strony
43--58
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Gdynia Maritime University, Gdynia, Poland
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • [1] Al-Rabeh A.H., Cekirge H.M. & Gunay N. A. (1989). Stochastic simulation model of oil spill fate and transport, Applied Mathematical Modelling, p. 322-329.
  • [2] Blokus A. & Kołowrocki K. (2003). On determination of survivor search domain at sea restricted areas, Risk Decision and Policy 8, 81-89.
  • [3] Blokus A. & Kwiatuszewska-Sarnecka B. (2018). Reliability analysis of the crude oil transfer system in the oil port terminal. Proc. International Conference on Industrial Engineering and Engineering Management - IEEM, Bangkok, Thailand.
  • [4] Bogalecka M. & Kołowrocki K. (2018). Prediction of critical infrastructure accident losses of chemical releases impacted by climate-weather change. Proc. International Conference on Industrial Engineering and Engineering Management - IEEM, Bangkok, Thailand.
  • [5] Bogalecka M. & Kołowrocki K. (2018). Minimization of critical infrastructure accident losses of chemical releases impacted by climate-weather change. Proc. International Conference on Industrial Engineering and Engineering Management - IEEM, Bangkok, Thailand.
  • [6] Dąbrowska E. (2019). Monte Carlo simulation approach to reliability analysis of complex systems, PhD Thesis, System Research Institute, Polish Academy of Science, Warsaw, Poland.
  • [7] Dąbrowska E. & Soszyńska-Budny J. (2018). Monte Carlo simulation forecasting of maritime ferry safety and resilience. Proc. International Conference on Industrial Engineering and Engineering Management - IEEM, Bangkok, Thailand.
  • [8] Fay J. A. (1971). Physical Processes in the Spread of Oil on a Water Surface. Proceedings of Joint Conference on Prevention and Control of Oil Spills, sponsored by American Petroleum Industry, Environmental Protection Agency, and United States Coast Guard
  • [9] Ferreira F. & Pacheco A. (2007). Comparison of level-crossing times for Markov and semi-Markov processes, Statistics and Probability Letters, Vol. 7, No 2, p. 151-157.
  • [10] Glynn P. W. & Haas P. J. (2006). Laws of large numbers and functional central limit theorems for generalized semi-Markov processes, Stochastic Models, Vol. 22, No 2, p. 201-231.
  • [11] Grabski F. (2014). Semi-Markov Processes: Application in System Reliability and Maintenance, Amsterdam, Boston, Heidelberd, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sidney, Tokyo, Elsevier.
  • [12] Guze S., Kolowrocki K. & Mazurek J. (2017). Modelling spread limitations of oil spills at sea. Proc. The 17th Conference of the Applied Stochastic Models and Data Analysis – ASMDA, London, UK
  • [13] Guze S., Mazurek J. & Smolarek L. (2016). Use of random walk in two-dimensional lattice graphs to describe influence of wind and sea currents on oil slick movement. Journal of KONES Powertrain and Transport, Vol. 23, No. 2.
  • [14] Huang J. C. (1983). A review of the state-of-the-art of oil spill fate/behavior models. International Oil Spill Conference Proceedings: February 1983, Vol. 1983, No. 1, p. 313-322.
  • [15] Kołowrocki K. (2014). Reliability of Large and Complex Systems, Amsterdam, Boston, Heidelberd, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sidney, Tokyo, Elsevier.
  • [16] Kołowrocki K. & Soszyńska-Budny J. (2011). Reliability and Safety of Complex Technical Systems and Processes: Modelling - Identification - Prediction - Optimization. London, Dordrecht, Heildeberg, New York, Springer.
  • [17] Kołowrocki K., Soszyńska-Budny J. & Torbicki M. (2018). Critical infrastructure impacted by climate change safety and resilience indicators. Proc. International Conference on Industrial Engineering and Engineering Management - IEEM, Bangkok, Thailand.
  • [18] Kołowrocki K., Soszyńska-Budny J., & Torbicki M. (2018). Critical infrastructure impacted by operation and climate change safety and resilience indicators. Proc. International Conference on Industrial Engineering and Engineering Management - IEEM, Bangkok, Thailand.
  • [19] National Petroleum Council (1972). Committee on Environmental Conservation. Environmental Conservation: The Oil and Gas Industries. Vol. 2.
  • [20] NOAA (1992). Oil Spill Case Histories 1967-1991; Summaries of Significant U.S. and International Spills. Hazardous Material Response and Assessment Division Report HMRAD 92-11. Seattle, WA. September.
  • [21] NOAA. Trajectory Analysis Handbook. NOAA Hazardous Material Response Division. Seattle, WA, undated (see http://www.response.restoration.noaa.gov/ for further information).
  • [22] Reed M., Johansen Ø., Brandvik P. J., Daling P., Lewis A., Fiocco R., Mackay D. & Prentki R. (1999). Oil Spill Modeling towards the Close of the 20th Century: Overview of the State of the Art. Spill Science & Technology Bulletin, 1999, p. 3-16.
  • [23] Spaulding M. L. (1988). A state-of-the-art review of oil spill trajectory and fate modeling. Oil and Chemical Pollution, Vol. 4, Issue 1, p. 39-55.
  • [24] Torbicki M. (2018). Longtime prediction of climate-weather change influence on critical infrastructure safety and resilience. Proc. International Conference on Industrial Engineering and Engineering Management - IEEM, Bangkok, Thailand.
  • [25] Torbicki M. (2019). Safety of critical infrastructure exposed to operation and weather conditions change. PhD Thesis, System Research Institute, Polish Academy of Science, Warsaw, Poland.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c102bd3-744a-458a-b222-92b05737965e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.