Identyfikatory
Warianty tytułu
Ocena obsługiwalności oparta na teorii zbiorów rozmytych bazująca na wirtualnej symulacji zadań konserwacyjnych systemów samolotu
Języki publikacji
Abstrakty
Maintainability is a significant design characteristic of civil aircraft system that has great effect on system availability, life cycle cost and operation safety. A virtual maintenance environment is constructed to support maintainability concurrent design of aircraft system, the evaluation method of maintainability attribute is proposed based on maintenance task virtual simulation or maintainability checklist, and then system maintainability comprehensive evaluation is proposed based on fuzzy theory. A case study, which is maintainability evaluation of a nose landing gear system in civil aircraft, shows the effectiveness of the method presented herein.
Obsługiwalność jest ważną cechą konstrukcyjną systemów stosowanych w samolotach cywilnych, która ma ogromny wpływ na gotowość systemu, koszty eksploatacji i bezpieczeństwo pracy W przedstawionych badaniach stworzono wirtualne środowisko eksploatacji wspierające łatwość obsługi systemów lotniczych; zaproponowana metoda oceny atrybutu obsługiwalności oparta jest o wirtualną symulację zadań konserwacyjnych lub listę kontrolną obsługiwalności. Następnie zaproponowano kompleksową ocenę obsługiwalności systemu opartą o teorię zbiorów rozmytych. Studium przypadku, analizujące obsługiwalność systemu podwozia części nosowej cywilnego samolotu, pokazuje skuteczność metody przedstawionej w niniejszym artykule.
Czasopismo
Rocznik
Tom
Strony
504--512
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- College of Civil Aviation, Nanjing University of Aeronautics and Astronautics 29 Jiangjun Road, Nanjing 211106, China
autor
- Department of Aircraft Maintenance China Eastern Airlines Jiangsu Limited Nanjing 211113, China
autor
- College of Civil Aviation, Nanjing University of Aeronautics and Astronautics 29 Jiangjun Road, Nanjing 211106, China
Bibliografia
- 1. Borro D, Savall J, A Amundarain, et al. A large haptic device for aircraft engine maintainability. IEEE Computer Graphics and Applications, 2004, 24(6):70-74, http://dx.doi.org/10.1109/MCG.2004.45.
- 2. Chen L, Cai J G. Using Vector Projection Method to evaluate maintainability of mechanical system in design review. Reliability Engineering & System Safety, 2003, 81(2):147-154, http://dx.doi.org/10.1016/S0951-8320(03)00075-9.
- 3. Desai A, Mital A. Improving maintainability of products through the adoption of a comprehensive design for maintainability method. International Journal of Industrial Engineering-Theory Applications and Practice, 2010, 17(2): 103-114.
- 4. DOD-HDBK-791AM. Maintainability Design Techniques. U.S. Department of Defense, 1988.
- 5. Hao J P, Yu Y L, Xue Q. A maintainability analysis visualization system and its development under the AutoCAD environment. Journal of Materials Processing Technology, 2002, 129(1-3): 277-282, http://dx.doi.org/10.1016/S0924-0136(02)00665-9.
- 6. Li J R, Wang Q H, Shen H Z. Fuzzy evaluation of maintainability with tribological factors at design stage. In Applied Mechanics and Mechanical Engineering, 2010, 20-32: 1027-1033.
- 7. Marcelino L, Murray N, Fernando T. A constraint manager to support virtual maintainability. Computers & Graphics-Uk, 2003, 27(1): 19-26, http://dx.doi.org/10.1016/S0097-8493(02)00228-5.
- 8. McAtamney L, Corlett E N. RULA. A survey method for the investigation of work-related upper limb disorders. Applied Ergonomics, 1993, 24(2): 91-99, http://dx.doi.org/10.1016/0003-6870(93)90080-S.
- 9. Meier J R, Russell J S. Model process for implementing maintainability. Journal of Construction Engineering and Management-Asce, 2000, 126(6): 440-450, http://dx.doi.org/10.1061/(ASCE)0733-9364(2000)126:6(440).
- 10. MIL-HDBK-472 Notice 1. Maintainability Prediction. USA Department of Defense. U.S. Department of Defense, 1984.
- 11. MIL-STD-470B. Maintainability Program Requirements for Systems and Equipment. U.S. Department of Defense, 1989.
- 12. MIL-STD-471A. Maintainability Verification/ Demonstration/ Evaluation. U.S. Department of Defense, 1973.
- 13. Pedro M D L,Vicente G P D, Luis B M, et al. A practical method for the maintainability assessment in industrial devices using indicators and specific attributes. Reliability Engineering & System Safety, 100 (2012): 84-92, http://dx.doi.org/10.1016/j.ress.2011.12.018.
- 14. Peng G L, Yu H Q, Liu X H, et al. A desktop virtual reality-based integrated system for complex product maintainability design and verification. Assembly Automation, 2010, 30(4): 333-344, http://dx.doi.org/10.1108/01445151011075799.
- 15. Pistikopoulos E N, Vassiliadis C G, Papageorgiou L G. Process design for maintainability: an optimization approach. Computers & Chemical Engineering, 2000, 24(2-7): 203-208, http://dx.doi.org/10.1016/S0098-1354(00)00514-7.
- 16. Rim Y H, Moon J H, Kim G Y, et al. Ergonomic and biomechnical analysis of automotive general assembly using xml and digital human models. International Journal of Automotive Technology, 2008, 9 (6): 719-728, http://dx.doi.org/10.1007/s12239-008-0085-7.
- 17. Slavila C A, Decreuse C, Ferney M. Fuzzy approach for maintainability evaluation in the design process. Concurrent Engineering-Research and Applications, 2005, 13(4): 291-300, http://dx.doi.org/10.1177/1063293X05059807.
- 18. Thomas L S. How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 1990, 48(1): 9-26, http://dx.doi.org/10.1016/0377-2217(90)90057-I.
- 19. Tjiparuro Z, Thompson G. Review of maintainability design principles and their application to conceptual design. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 2004, 218(E2): 103-113, http://dx.doi.org/10.1243/095440804774134280.
- 20. Vujosevic R. Maintainability Analysis in Concurrent Engineering of Mechanical Systems.Concurrent Engineering: Research and Applications, 1995, 3(1): 61–73, http://dx.doi.org/10.1177/1063293X9500300108.
- 21. Wani M F and O P Gandhi. Development of maintainability index for mechanical systems.Reliability Engineering & System Safety, 1999, 65(3): 259-270, http://dx.doi.org/10.1016/S0951-8320(99)00004-6.
- 22. Wani M F and O P Gandhi. Maintainability design and evaluation of mechanical systems based on tribology. Reliability Engineering & System Safety, 2002, 77(2):181-188, http://dx.doi.org/10.1016/S0951-8320(02)00032-7.
- 23. Yu H Q, Peng G L, Liu W J. A practical method for measuring product maintainability in a virtual environment. Assembly Automation, 2011, 31(1):53-61, http://dx.doi.org/10.1108/01445151111104173.
- 24. ZHOU D, JIA X, LV C, et al. Maintainability Allocation Method Based on Time Characteristics for Complex Equipment. Eksploatacja i Niezawodność– Maintenance and Reliability, 2013; 15 (4): 441–448.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c058931-ca66-4f13-bd74-c9d9a25e99e6