PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Water Needs of Grapevines in the Different Regions of Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to estimate the water needs of grapevines (Vitis vinifera L.) in the different regions of Poland. The requirements of grapevines water, considered as the crop evapotranspiration, were determined using the plant coefficient method. The grapevine plants crop evapotranspiration was measured using the reference evapotranspiration and plant coefficients. The plant coefficients were adapted to the reference evapotranspiration that was calculated using the Blaney‑Criddle’s formula, modified for Polish conditions by Żakowicz. The water needs of grapevines were determined for five agro‑climatic regions of Poland with the representative meteorological stations. The calculations of grapevines water requirements were carried out for the thirty‑year period determined from 1981 to 2010. The study was based on the six‑month growing season established from May 1 to October 31. Four months, including May, June, July and August, were considered as the irrigation period. The highest grapevines water requirements (440 mm) during the growing season, were observed in the north‑west and central‑east region of Poland. In turn, the lowest water requirements were revealed in the south‑east (414 mm) and north‑east (415 mm) region of the country. During the irrigation period, the highest grapevines water needs occurred in the central‑north‑west (355 mm) and central‑east (353 mm) region of Poland, while the lowest (329 mm) – in the south‑east region of the country. The upward time trend of the grapevines water requirements was observed both in the growing season and in the irrigation period. With the exception of the central‑north‑west region, this time trend was significant throughout Poland. The highest increase in the water needs of grapevines during the growing season (by 6.9 mm in each subsequent ten‑year period) occurred in the central‑east and south‑east region of Poland. In the irrigation period, the highest rise of grapevines water requirements was noted in the south‑west (7.4 mm decade ‑1) and south‑east (7.6 mm decade ‑1) region of the country. The highest rainfall deficit was observed in the central‑north‑west region of Poland; 125 mm during the growing season, and 117 mm in the irrigation period.
Rocznik
Strony
222--232
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bernardyńska 6, 85‑029 Bydgoszcz, Poland
  • Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, 29 Listopada 54, 31‑425 Krakow, Poland
  • University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bernardyńska 6, 85‑029 Bydgoszcz, Poland
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Nowoursynowska 166, 02‑787 Warszawa, Poland
  • Poznań University of Life Sciences, Faculty of Environmental Engineering and Spatial Management, Institute of Land Improvement, Environmental Development and Geodesy, Piątkowska 94, 60‑649 Poznań, Poland
  • Institute of Technology and Life Sciences, Kuyavian‑Pomeranian Research Centre, Glinki 60, 85‑174 Bydgoszcz, Poland
  • University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bernardyńska 6, 85‑029 Bydgoszcz, Poland
  • University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bernardyńska 6, 85‑029 Bydgoszcz, Poland
  • University of Science and Technology, Department of Biology and Animal Environment, ul. Mazowiecka 28, 85‑084 Bydgoszcz, Poland
  • University of Economy, Faculty of Medical Sciences, Garbary 2, 85‑229 Bydgoszcz, Poland
Bibliografia
  • 1. Acevedo‑Opazoa C., Ortega‑Fariasa S., Fuentes S. 2010. Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97(7), 956–964.
  • 2. Adamczewska‑Sowińska K., Bąbelewski P., Chohura P., Czaplicka‑Pędzich M., Gudarowska E., Krężel J., Mazurek J., Sosna I., Szewczuk A. 2016. Agrotechniczne aspekty uprawy winorośli. Druk24h.com.pl, Wrocław, 1–203.
  • 3. Bąk B., Łabędzki L. 2014. Thermal conditions in Bydgoszcz region in growing seasons 2011–2050 in view of expected climate change. Journal of Water and Land Development, 23, 21–29.
  • 4. Bokwa A., Klimek M. 2009. Warunki klimatyczne Pogórza Wielickiego dla potrzeb uprawy winorośli. In: A. Zborowski and Z. Górka (Eds). Człowiek i rolnictwo. Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, Kraków, 103–111.
  • 5. Burg P. 2008. The influence of drip irrigation on the quality of vine grapes. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 56(1), 31–36.
  • 6. Chaves M.M., Santos T.P., Souza C.R., Ortuño M.F., Rodrigues M.L., Lopes C.M., Maroco J.P., Pereira J.S. 2007. Deficit irrigation in grapevine improves water use efficiency while controlling vigour and production quality. Annals of Applied Biology, 150(2), 237–252.
  • 7. Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M. 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661–676.
  • 8. Cifre J., Bota J., Escalona J.M., Medrano H., Flexas J. 2005. Phyisological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water‑use efficiency? Agriculture, Ecosystems & Environment, 106(2–3), 159–170.
  • 9. Doorenbos J., Pruitt W.O. 1977. Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper, 24, 145.
  • 10. Dzieżyc J. 1988. Rolnictwo w warunkach nawadniania. Państwowe Wydawnictwo Naukowe, Warszawa, 1–415.
  • 11. Grabowski J., Kopytowski J. 2009. Czas aktywnego wzrostu roślin w Polsce północno‑wschodniej, a warunki uprawy winorośli. Zeszyty Problemowe Postępów Nauk Rolniczych, 536, 87–94.
  • 12. Intrigliolo D.S., Castel J.R. 2008. Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. American Journal of Enology and Viticulture, 59, 30–38.
  • 13. Intrigliolo D.S., Pérez D., Risco D., Yeves A., Castel J.R. 2012. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Science, 30(5), 339–349.
  • 14. Kapłan M. 2013. Możliwości uprawy winorośli w Polsce. Nauki Przyrodnicze, 2, 4–12.
  • 15. Kopeć B. 2009. Uwarunkowania termiczne wegetacji winorośli na obszarze południowo‑wschodniej Polski. Infrastruktura i Ekologia Terenów Wiejskich, 4, 251–262.
  • 16. Koźmiński C., Michalska B. 2001. Atlas klimatycznego ryzyka uprawy roślin w Polsce. Akademia Rolnicza w Szczecinie, Uniwersytet Szczeciński, 17–18.
  • 17. Kuchar L., Iwański S. 2011. Rainfall simulation for the prediction of crop irrigation in future climate. Infrastructure and Ecology of Rural Areas, 5, 7–18.
  • 18. Kuchar L., Iwański S. 2013. Rainfall evaluation for crop production until 2050–2060 and selected climate change scenarios for North Central Poland. Infrastructure and Ecology of Rural Areas, 2(I), 187–200.
  • 19. Kuchar L., Iwański S., Diakowska E., Gąsiorek E. 2015. Simulation of hydrothermal conditions for crop production purpose until 2050–2060 and selected climate change scenarios for North Central Poland. Infrastructure and Ecology of Rural Areas, II(1), 319–334.
  • 20. Kuchar L., Iwański S., Diakowska E., Gąsiorek E. 2017. Assessment of meteorological drought in 2015 for North Central part of Poland using hydrothermal coefficient (HTC) in the context of climate change. Infrastructure and Ecology of Rural Areas, I(2), 257–273.
  • 21. Lisek J. 2008. Climatic factors affecting development and yielding of grapevine in Central Poland. Journal of Fruit and Ornamental Plant Research, 16, 286–293.
  • 22. Lisek J. 2011. Winorośl w uprawie przydomowej i towarowej. Hortpress, Warszawa, 1–216.
  • 23. Łabędzki L. 2009a. Foreseen climate changes and irrigation development in Poland. Infrastructure and Ecology of Rural Areas, 3, 7–18.
  • 24. Łabędzki L. 2009b. Expected development of irrigation in Poland in the context of climate change. Journal of Water and Land Development, 13b, 17–29.
  • 25. Łabędzki L., Szajda J., Szuniewicz J. 1996. Ewapotranspiracja upraw rolniczych – terminologia, definicje, metody obliczania. Przegląd stanu wiedzy. Materiały Informacyjne. Instytut Melioracji i Użytków Zielonych, Falenty, 33: 1–15.
  • 26. Łabędzki L., Bąk B., Liszewska M. 2013. Wpływ przewidywanej zmiany klimatu na zapotrzebowanie ziemniaka późnego na wodę. Infrastructure and Ecology of Rural Areas, 2(I), 155–165.
  • 27. Myśliwiec R. 2013. Uprawa winorośli. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 1–189.
  • 28. Nolz R., Loiskandl W., Kammerer G., Himmelbauer M.L. 2016. Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control. Soil & Water Resources, 11, 250–258.
  • 29. Nolz R., Loiskandl W. 2017. Evaluating soil water content data monitored at different locations in a vineyard with regard to irrigation control. Soil & Water Resources, 12, 152–160.
  • 30. Pink M. 2015. Polska jako kraj winiarski? Od tradycji do rodzących się możliwości. Problemy Drobnych Gospodarstw Rolnych, 2, 37–56.
  • 31. Rolbiecki S. 2018. O szacowaniu potrzeb wodnych drzew owocowych w Polsce na podstawie temperatury powietrza. Infrastruktura i Ekologia Terenów Wiejskich, II(1), 393–406.
  • 32. Rolbiecki S., Rolbiecki R., Rzekanowski C. 2002a. Response of black currant (Ribes nigrum L.) cv. ‘Titania’ to micro‑irrigation under loose sandy soil conditions. Acta Horticulturae, 585(2), 649–652.
  • 33. Rolbiecki S., Rolbiecki R., Rzekanowski C. 2002b. Effect of micro‑irrigation on the growth and yield of raspberry (Rubus idaeus L.) cv. ‘Polana’ grown in very light soil. Acta Horticulturae, 585(2), 653–657.
  • 34. Rolbiecki S., Piszczek P. 2016. Effect of the forecast climate change on the grapevine water requirements in the Bydgoszcz region. Infrastructure and Ecology of Rural Areas, IV(4), 1847–1856.
  • 35. Rolbiecki S., Piszczek P., Chmura K. 2017. Attempt at comparison of the grapevine water requirements in the regions of Bydgoszcz and Wrocław. Infrastructure and Ecology of Rural Areas, III(2), 1157–1166.
  • 36. Ruiz‑Sanchez M.C., Domingo R., Castel J.R. 2010. Review. Deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research, 8, 5–20.
  • 37. Rzekanowski C., Rolbiecki S. 2000a. The influence of drip irrigation on yields of some cultivars of apple trees in central Poland under different rainfall conditions during the vegetation season. Acta Horticulturae 537(2), 929–936.
  • 38. Rzekanowski C., Rolbiecki S. 2000b. The influence of drip irrigation on yields of some cultivars of stone fruit‑bearing trees in central Poland under different rainfall conditions during the vegetation season. Acta Horticulturae, 537(2), 937–942.
  • 39. Słowik K. 1973. Deszczowanie roślin sadowniczych. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 1–129.
  • 40. Stachowski P., Markiewicz J. 2011. The need of irrigation in central Poland on the example of Kutno county. Annual Set The Environment Protection, 13, 1453–1472.
  • 41. Szymanowski M., Smaza M. 2007. Zmiana zasobów klimatycznych a możliwości uprawy winorośli na Dolnym Śląsku. Instytut Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego. Referat na XXXII Ogólnopolski Zjazd Agrometeorologów i Klimatologów, Kołobrzeg, 13–15 września, 69–70.
  • 42. Treder W., Pacholak E. 2006. Nawadnianie roślin sadowniczych. In: S. Karczmarczyk and L. Nowak (Eds). Nawadnianie roślin. Państwowe Wydawnictwo Rolnicze i Leśne, Poznań, 333–365.
  • 43. Woś A. 1999. Klimat Polski. Państwowe Wydawnictwo Naukowe, Warszawa, 1–302.
  • 44. Yunusa I.A.M., Walker R.R., Loveys B.R., Blackmore D.H. 2000. Determination of transpiration in irrigated grapevines: comparison of the heat‑pulse technique with gravimetric and micrometeorological methods. Irrigation Science, 20(1), 1–8.
  • 45. Żakowicz S. 2010. Podstawy technologii nawadniania rekultywowanych składowisk odpadów komunalnych. Rozprawy Naukowe i Monografie. Szkoła Główna Gospodarstwa Wiejskiego, Warszawa, 1–95.
  • 46. Żarski J., Dudek S., Kuśmierek‑Tomaszewska R., Rolbiecki R., Rolbiecki S. 2013. Forecasting effects of plants irrigation based on selected meteorological and agricultural drought indices. Annual Set The Environment Protection, 15, 2185–2203.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bfd9c2d-823f-4a2a-b4ac-3f4800fa4a16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.