PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainable manufacturing: re-contouring of laser cladding restored parts by machining method with cutting energy management

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laser cladding has been commonly utilized for restoring high value-added parts. However, the poor surface quality becomes key technological barrier which restricts its widespread applications. In the paper, re-contouring strategies by machining method are explored for minimal energy consumption as well as required surface roughness. Firstly, the effect of structural characteristics of the laser-cladded workpiece on specific cutting energy was explored by means of layer-by-layer turning and orthogonal cutting. Results indicated that the specific cutting energy increased, and the machining chatter/vibration exacerbated with decreasing coating thickness under fixed cutting parameters. The reason can be summarized as a result of the effect of elastoplastic deformation behavior across the interface. Then, the influences of depth of cut and feed on specific cutting energy in finish turning were addressed. Results indicated that the specific cutting energy reduced with increasing depth of cut and feed in the form of power functions. In addition, energy efficiency decreased with an increase in uncut chip thickness and cutting speed. On basis of this work, large feed and low cutting speed with the adoption of wiper inserts were recommended for minimizing energy consumption within surface roughness requirement.
Rocznik
Strony
167--176
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
autor
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
autor
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
autor
  • Shandong Province Key Laboratory of Mine Mechanical Engineering, Shandong University of Science and Technology, Qingdao 266590, People’s Republic of China
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, People’s Republic of China
Bibliografia
  • [1] Chen C, Wang Y, Ou H, He Y, Tang X. A review on remanufacture of dies and moulds. J Clean Prod. 2014;64:13–23.
  • [2] Morrow W, Qi H, Kim I, Mazumder J, Skerlos S. Environmental aspects of laser-based and conventional tool and die manufacturing. J Clean Prod. 2007;15:932–43.
  • [3] Hemmati I, Ocelík V, De Hosson JTM. Dilution effects in laser cladding of Ni–Cr–B–Si–C hardfacing alloys. Mater Lett. 2012;84:69–72.
  • [4] Hu L, Tang R, Liu Y, Cao Y, Tiwari A. Optimising the machining time, deviation and energy consumption through a multiobjective feature sequencing approach. Energy Convers Manag. 2018;160:126–40.
  • [5] Zhang P, Liu Z, Guo Y. Machinability for dry turning of laser cladded parts with conventional vs. wiper insert. J Manuf Process. 2017;28:494–9.
  • [6] Zhang P, Liu Z. Modeling and prediction for 3D surface topography in finish turning with conventional and wiper inserts. Measurement. 2016;94:37–45.
  • [7] Zhang P, Liu Z. Machinability investigations on turning of Cr–Ni-based stainless steel cladding formed by laser cladding process. Int J Adv Manuf Technol. 2016;82:1707–14.
  • [8] Kurniawan D, Yusof NM, Sharif S. Hard machining of stainless steel using wiper coated carbide: tool life and surface integrity. Mater Manuf Process. 2010;25:370–7.
  • [9] Noordin M, Kurniawan D, Sharif S. Hard turning of stainless steel using wiper coated carbide tool. Int J Precis Technol. 2007;1:75–84.
  • [10] Correia AE, Davim JP. Surface roughness measurement in turning carbon steel AISI 1045 using wiper inserts. Measurement. 2011;44:1000–5.
  • [11] Guddat J, M’saoubi R, Alm P, Meyer D. Hard turning of AISI 52100 using PCBN wiper geometry inserts and the resulting surface integrity. Procedia Eng. 2011;19:118–24.
  • [12] Grzesik W, Wanat T. Surface finish generated in hard turning of quenched alloy steel parts using conventional and wiper ceramic inserts. Int J Mach Tools Manuf. 2006;46:1988–95.
  • [13] Davim JP, Figueira L. Comparative evaluation of conventional and wiper ceramic tools on cutting forces, surface roughness, and tool wear in hard turning AISI D2 steel. Proc Inst Mech Eng Part B J Eng Manuf. 2007;221:625–33.
  • [14] Özel T, Karpat Y, Figueira L, Davim JP. Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts. J Mater Process Technol. 2007;189:192–8.
  • [15] Gaitonde V, Karnik S, Figueira L, Davim JP. Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. Int J Refract Met Hard Mater. 2009;27:754–63.
  • [16] Sarwar M, Persson M, Hellbergh H, Haider J. Measurement of specific cutting energy for evaluating the efficiency of bandsawing different workpiece materials. Int J Mach Tools Manuf. 2009;49:958–65.
  • [17] Velchev S, Kolev I, Ivanov K, Gechevski S. Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. J Clean Prod. 2014;80:139–49.
  • [18] Balogun VA, Mativenga PT. Impact of un-deformed chip thickness on specific energy in mechanical machining processes. J Clean Prod. 2014;69:260–8.
  • [19] Jia S, Yuan Q, Cai W, Li M, Li Z. Energy modeling method of machine-operator system for sustainable machining. Energy Convers Manag. 2018;172:265–76.
  • [20] Paul S, Bandyopadhyay P, Paul S. Minimisation of specific cutting energy and back force in turning of AISI 1060 steel. Proc Inst Mech Eng Part B J Eng Manuf. 2018;232:2019–29.
  • [21] Wang B, Liu Z, Song Q, Wan Y, Ren X. An approach for reducing cutting energy consumption with ultra-high speed machining of super alloy Inconel 718. Int J Precis Eng Manuf Green Technol. 2020;7:35–51.
  • [22] Xie N, Zhou J, Zheng B. Selection of optimum turning parameters based on cooperative optimization of minimum energy consumption and high surface quality. Procedia CIRP. 2018;72:1469–74.
  • [23] Wang M, Xu B, Dong S, Zhang J, Wei S. Experimental investigations of cutting parameters influence on cutting forces in turning of Fe-based amorphous overlay for remanufacture. Int J Adv Manuf Technol. 2013;65:735–43.
  • [24] Wang M, Xu B, Zhang J, Dong S, Wei S. Experimental observations on surface roughness, chip morphology, and tool wear behavior in machining Fe-based amorphous alloy overlay for remanufacture. Int J Adv Manuf Technol. 2013;67:1537–48.
  • [25] Sun Y, Zhang Z, Zhang J, Jin X, Xu B, Zhao G. Cutting force models for Fe–Al-based coating processed by a compound NC machine tool. Int J Adv Manuf Technol. 2015;79(1–4):693–704.
  • [26] Sun Y, Zhang J, Zhang Z, Jin X, Xu B, Zhao G. Bond strength of an Fe–Al-based coating as influenced by cutting parameters and the dynamic characteristics of a compound NC machine tool. Int J Adv Manuf Technol. 2015;80:455–66.
  • [27] Özbek O, Saruhan H. The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. J Mater Res Technol. 2020. https ://doi.org/10.1016/j.jmrt.2020.01.010.
  • [28] Rodrigues AR, Coelho RT. Influence of the tool edge geometry on specific cutting energy at high-speed cutting. J Braz Soc Mech Sci Eng. 2007;29:279–83.
  • [29] Wang B, Liu Z, Song Q, Wan Y, Shi Z. Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy. J Clean Prod. 2016;129:292–304.
  • [30] Zhang P, Liu Z. Plastic deformation and critical condition for orthogonal machining two-layered materials with laser cladded Cr–Ni-based stainless steel onto AISI 1045. J Clean Prod. 2017;149:1033–44.
  • [31] Zhang P, Liu Z. Physical-mechanical and electrochemical corrosion behaviors of additively manufactured Cr–Ni-based stainless steel formed by laser cladding. Mater Des. 2016;100:254–62.
  • [32]. Zhang P, Liu Z. On sustainable manufacturing of Cr–Ni alloy coatings by laser cladding and high-efficiency turning process chain and consequent corrosion resistance. J Clean Prod. 2017;161:676–87.
  • [33] Camposeco-Negrete C. Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. J Clean Prod. 2013;53:195–203.
  • [34] Hanafi I, Khamlichi A, Cabrera FM, Almansa E, Jabbouri A. Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. J Clean Prod. 2012;33:1–9.
  • [35] Tillmann W, Hagen L, Stangier D, Paulus M, Tolan M, Sakowski R, Biermann D, Freiburg D. Microstructural characteristics of high-feed milled HVOF sprayed WC–Co coatings. Surf Coat Technol. 2019;374:448–59.
  • [36] Wang C, Li K, Chen M, Liu Z. Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays. J Clean Prod. 2015;108:145–57.
  • [37] Wang CD, Chen M, An QL, Wang M, Zhu YH. Tool wear performance in face milling Inconel 182 using minimum quantity lubrication with different nozzle positions. Int J Precis Eng Manuf. 2014;15:557–65.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bf1f136-0a7d-4e6d-b4cd-27946ed2ba59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.