Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Early detection of developmental delays is crucial for improving children’s cognitive, social, and emotional outcomes through timely interventions. This study explores the potential of machine learning (ML) and deep learning (DL) to classify Electroencephalography (EEG) data from an oddball task, distinguishing between children with and without developmental delays. Participants underwent language assessments and EEG recordings, with subsequent analysis using Event-Related Potentials (ERPs), Event-Related Spectral Perturbations (ERSPs), and functional connectivity to characterize group differences. Three methodologies were employed in this research to classify EEG data. Firstly, statistical features are extracted from the EEG data and various ML algorithms are applied for classification, with feature selection techniques utilized to identify the most relevant features and enhance classification accuracy. Secondly, brain dynamics is utilized to incorporate ERP, ERSP, and functional connectivity measures as features for developmental delay detection. Similar to the first approach, feature selection techniques are again employed to enhance classification accuracy. Lastly, DL approaches are explored by implementing multiple convolutional neural networks (CNNs), including a 2D CNN (EEGNet), various hybrid CNN architectures integrating LSTM, GRU, and attention mechanisms, and a novel 1D CNN with a standardized convolutional layer (SCL) for improved stability and training performance. The effectiveness of each approach in accurately classifying EEG data for developmental delay detection is independently analyzed. The results demonstrate that the proposed 1D convolutional neural network outperforms both EEGNet and the employed ML classifiers. This model achieves an impressive accuracy of 96.4% and an F1 score of 96.6%, underscoring its potential as a valuable tool for early and accurate developmental delay detection using EEG data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
229--246
Opis fizyczny
Bibliogr. 97 poz., rys., tab., wykr.
Twórcy
autor
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, Taiwan
autor
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei City, Taiwan
autor
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei City, Taiwan
autor
- Department of Communication Engineering, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
autor
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, Taiwan
autor
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
autor
- Department of Electronic Engineering, National Taipei University of Technology, Taipei City, Taiwan
Bibliografia
- [1] Scherzer AL, Chhagan M, Kauchali S, Susser E. Global perspective on early diagnosis and intervention for children with developmental delays and disabilities. Dev Med Child Neurol 2012;54:1079-84. https://doi.org/10.1111/j.1469- 8749.2012.04348.x.
- [2] Choo YY, Agarwal P, How CH, Yeleswarapu SP. Developmental delay: Identification and management at primary care level. Singapore Med J 2019;60: 119-23. https://doi.org/10.11622/smedj.2019025.
- [3] Noritz GH, Murphy NA. Motor delays: Early identification and evaluation. Pediatrics 2013;131:e2016. https://doi.org/10.1542/peds.2013-1056.
- [4] Emerson E, Einfeld S. Emotional and behavioural difficulties in young children with and without developmental delay: A bi-national perspective. J Child Psychol Psychiatry 2010;51:583-93. https://doi.org/10.1111/j.1469-7610.2009.02179.x.
- [5] Merrell KW, Holland ML. Social-emotional behavior of preschool-age children with and without developmental delays. Res Dev Disabil 1997;18:393-405. https://doi.org/10.1016/S0891-4222(97)00018-8.
- [6] Duby JC, Lipkin PH, Macias MM, Wegner LM, Duncan P, Hagan JF, et al. Identifying infants and young children with developmental disorders in the medical home: An algorithm for developmental surveillance and screening. Pediatrics 2006;118:405-20. https://doi.org/10.1542/peds.2006-1231.
- [7] Skovgaard AM, Houmann T, Christiansen E, Olsen EM, Landorph SL, Lichtenberg A, et al. Can a general health surveillance between birth and 10 months identify children with mental disorder at 11/2 year? A case-control study nested in cohort CCC 2000. Eur Child Adolesc Psychiatry 2008;17:290-8. https:// doi.org/10.1007/s00787-007-0666-4.
- [8] Hwang AW, Chao MY, Liu SW. A randomized controlled trial of routines-based early intervention for children with or at risk for developmental delay. Res Dev Disabil 2013;34:3112-23. https://doi.org/10.1016/j.ridd.2013.06.037.
- [9] Doyle O, Harmon CP, Heckman JJ, Tremblay RE. Investing in early human development: Timing and economic efficiency. Econ Hum Biol 2009;7:1-6. https://doi.org/10.1016/j.ehb.2009.01.002.
- [10] Anderson LM, Shinn C, Fullilove MT, Scrimshaw SC, Fielding JE, Normand J, et al. The effectiveness of early childhood development programs: A systematic review. Am J Prev Med 2003;24:32-46. https://doi.org/10.1016/S0749-3797(02)00655-4.
- [11] Mackrides PS, Ryherd SJ. Screening for developmental delay. Am Fam Physician 2011;84:544-9.
- [12] Pizur-Barnekow K, Erickson S, Johnston M, Bass T, Lucinski L, Bleuel D. Early identification of developmental delays through surveillance, screening, and diagnostic evaluation. Infants Young Child 2010;23:323-30. https://doi.org/ 10.1097/IYC.0b013e3181f422a4.
- [13] Sheldrick RC, Marakovitz S, Garfinkel D, Carter AS, Perrin EC. Comparative Accuracy of Developmental Screening Questionnaires. JAMA Pediatr 2020;174: 366-74. https://doi.org/10.1001/jamapediatrics.2019.6000.
- [14] Al-Qabandi M, Gorter JW, Rosenbaum P. Early autism detection: Are we ready for routine screening? Pediatrics 2011;128:e211. https://doi.org/10.1542/peds.2010-1881.
- [15] Lau-Zhu A, Fritz A, McLoughlin G. Overlaps and distinctions between attention deficit/hyperactivity disorder and autism spectrum disorder in young adulthood: Systematic review and guiding framework for EEG-imaging research. Neurosci Biobehav Rev 2019;96:93-115. https://doi.org/10.1016/j.neubiorev.2018.10.009.
- [16] Le Cunff AL, Dommett E, Giampietro V. Neurophysiological measures and correlates of cognitive load in attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and dyslexia: A scoping review and research recommendations. Eur J Neurosci 2024;59:256-82. https://doi.org/10.1111/ejn.16201.
- [17] Tawhid MNA, Siuly S, Wang K, Wang H. Automatic and Efficient Framework for Identifying Multiple Neurological Disorders From EEG Signals. IEEE Trans Technol Soc 2023;4:76-86. https://doi.org/10.1109/tts.2023.3239526.
- [18] Berg AT, Loddenkemper T, Baca CB. Diagnostic delays in children with early onset epilepsy: Impact, reasons, and opportunities to improve care. Epilepsia 2014;55: 123-32. https://doi.org/10.1111/epi.12479.
- [19] Siuly S, Li Y, Zhang Y. EEG Signal Analysis and Classification Techniques and Applications. Springer 2016;11:256.
- [20] Yasuhara A. Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain and Development 2010;32:791-8. https://doi.org/ 10.1016/j.braindev.2010.08.010.
- [21] Hayashi-Kurahashi N, Kidokoro H, Kubota T, Maruyama K, Kato Y, Kato T, et al. EEG for predicting early neurodevelopment in preterm infants: An observational cohort study. Pediatrics 2012;130:e891. https://doi.org/10.1542/peds.2012-1115.
- [22] Damien J, Vannasing P, Tremblay J, Petitpas L, Marandyuk B, Balasingam T, et al. Relationship between EEG spectral power and dysglycemia with neurodevelopmental outcomes after neonatal encephalopathy. Clin Neurophysiol 2024;163:160-73. https://doi.org/10.1016/j.clinph.2024.03.029.
- [23] Bosl WJ, Tager-Flusberg H, Nelson CA. EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach. Sci Rep 2018;8:6828. https://doi.org/ 10.1038/s41598-018-24318-x.
- [24] Huang J, Zhu Q, Hao X, Shi X, Gao S, Xu X, et al. Identifying Resting-State Multifrequency Biomarkers via Tree-Guided Group Sparse Learning for Schizophrenia Classification. IEEE J Biomed Health Inform 2019;23:342-50. https://doi.org/10.1109/JBHI.2018.2796588.
- [25] Squarcina L, Bellani M, Lasalvia A, Dusi N, Ruggeri M, Perlini C, et al. Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques. Neuroimage 2017;145:238-45. https:// doi.org/10.1016/j.neuroimage.2015.12.007.
- [26] Kang J, Han X, Song J, Niu Z, Li X. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Comput Biol Med 2020;120:103722. https://doi.org/10.1016/j.compbiomed.2020.103722.
- [27] Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: A review. J Neural Eng 2019;16:031001. https://doi.org/10.1088/1741-2552/ab0ab5.
- [28] Shatte ABR, Hutchinson DM, Teague SJ. Machine learning in mental health: A scoping review of methods and applications. Psychol Med 2019;49:1426-48. https://doi.org/10.1017/S0033291719000151.
- [29] Dakka J, Bashivan P, Gheiratmand M, Rish I, Jha S, Greiner R. Learning Neural Markers of Schizophrenia Disorder Using Recurrent Neural Networks. ArXiv Preprint ArXiv 2017;1712.00512.
- [30] Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR. Deep convolutional neural network model for automated diagnosis of Schizophrenia using EEG signals. Applied Sciences (Switzerland) 2019;9:2870. https://doi.org/10.3390/app9142870.
- [31] Chen H, Song Y, Li X. A deep learning framework for identifying children with ADHD using an EEG-based brain network. Neurocomputing 2019;356:83-96. https://doi.org/10.1016/j.neucom.2019.04.058.
- [32] Huang JC, Li CM, Huang AS, Wu CG, Lu L. Communication and language screening test for birth to three Chinese-speaking infant-toddlers. Speech Hear Rev 2009;9: 1e56.
- [33] Clark VP, Hillyard SA. Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J Cogn Neurosci 1996;8: 387-402. https://doi.org/10.1162/jocn.1996.8.5.387.
- [34] Polich J. Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 2007;118. https://doi.org/10.1016/j.clinph.2007.04.019.
- [35] Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004;134:9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009.
- [36] Schiratti JB, Le Douget JE, Le Van Quyen M, Essid S, Gramfort A. An Ensemble Learning Approach to Detect Epileptic Seizures from Long Intracranial EEG Recordings. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2018- April, 2018, p. 856-60. doi: 10.1109/ ICASSP.2018.8461489.
- [37] Peng H, Long F, Ding C. Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans Pattern Anal Mach Intell 2005;27:1226-38. https://doi.org/10.1109/TPAMI.2005.159.
- [38] Pal M. Random forest classifier for remote sensing classification. Int J Remote Sens 2005;26:217-22. https://doi.org/10.1080/01431160412331269698.
- [39] Freund Y, Schapire RE. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J Comput Syst Sci 1997;55:119-39. https://doi.org/10.1006/jcss.1997.1504.
- [40] Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat 2001;29:1189-232. https://doi.org/10.1214/aos/1013203451.
- [41] Ozel P, Akan A, Yilmaz B. Synchrosqueezing transform based feature extraction from EEG signals for emotional state prediction. Biomed Signal Process Control 2019;52:152-61. https://doi.org/10.1016/j.bspc.2019.04.023.
- [42] Sperandei S. Understanding logistic regression analysis Biochem Med (Zagreb) 2014;24:12-8. https://doi.org/10.11613/BM.2014.003.
- [43] Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 1992;46:175-85. https://doi.org/10.1080/00031305.1992.10475879.
- [44] Quinlan JR. Induction of Decision Trees. Mach Learn 1986;1:81-106. https://doi.org/10.1023/A:1022643204877.
- [45] Chen S, Webb GI, Liu L, Ma X. A novel selective naïve Bayes algorithm. Knowl Based Syst 2020;192:105361. https://doi.org/10.1016/j.knosys.2019.105361.
- [46] Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng 2018;15:056013. https://doi.org/10.1088/1741-2552/aace8c.
- [47] Yan R, Liao J, Yang J, Sun W, Nong M, Li F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst Appl 2021;169. https://doi.org/10.1016/j.eswa.2020.114513.
- [48] Wang C, Wang X, Jing X, Yokoi H, Huang W, Zhu M, et al. Towards high-accuracy classifying attention-deficit/hyperactivity disorders using CNN-LSTM model. J Neural Eng 2022;19. https://doi.org/10.1088/1741-2552/ac7f5d.
- [49] Lee C, An J. LSTM-CNN model of drowsiness detection from multiple consciousness states acquired by EEG. Expert Syst Appl 2023;213. https://doi.org/10.1016/j.eswa.2022.119032.
- [50] Wilaiprasitporn T, Ditthapron A, Matchaparn K, Tongbuasirilai T, Banluesombatkul N, Chuangsuwanich E. Affective EEG-Based Person Identification Using the Deep Learning Approach. IEEE Trans Cogn Dev Syst 2020;12. https:// doi.org/10.1109/TCDS.2019.2924648.
- [51] Xu G, Guo W, Wang Y. Subject-independent EEG emotion recognition with hybrid spatio-temporal GRU-Conv architecture. Med Biol Eng Comput 2023;61. https://doi.org/10.1007/s11517-022-02686-x.
- [52] EskandariNasab M, Raeisi Z, Lashaki RA, Najafi H. A GRU-CNN model for auditory attention detection using microstate and recurrence quantification analysis. Sci Rep 2024;14:8861.
- [53] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural Comput 2000;12. https://doi.org/10.1162/089976600300015015.
- [54] Dey R, Salemt FM. Gate-variants of Gated Recurrent Unit (GRU) neural networks. Midwest Symposium on Circuits and Systems, vol. 2017- August, 2017. doi: 10.1109/MWSCAS.2017.8053243.
- [55] Niu Z, Zhong G, Yu H. A review on the attention mechanism of deep learning. Neurocomputing 2021;452. https://doi.org/10.1016/j.neucom.2021.03.091.
- [56] Gombolay GY, Gopalan N, Bernasconi A, Nabbout R, Megerian JT, Siegel B, et al. Review of Machine Learning and Artificial Intelligence (ML/AI) for the Pediatric Neurologist. Pediatr Neurol 2023;141:42-51. https://doi.org/10.1016/j. Pediatrneurol.2023.01.004.
- [57] Han K, Liu C, Friedman D. Artificial intelligence/machine learning for epilepsy and seizure diagnosis. Epilepsy Behav 2024;155:109736. https://doi.org/10.1016/j.yebeh.2024.109736.
- [58] Jahan S, Nowsheen F, Antik MM, Rahman MS, Kaiser MS, Hosen ASMS, et al. AI-Based Epileptic Seizure Detection and Prediction in Internet of Healthcare Things: A Systematic Review. IEEE Access 2023;11:30690-725. https://doi.org/10.1109/ ACCESS.2023.3251105.
- [59] Himes AA, Kirpalani A. Altered Mental Status and Hypertension in an 8-year-old Boy. Pediatr Rev 2024;45:292-5. https://doi.org/10.1542/pir.2022-005656.
- [60] Rohini BR, Shoaib K, Yogish HK. A Review on Machine Learning Approaches in Diagnosis of ADHD Based on Big Data. Big Data Computing: Advances in Technologies, Methodologies, and Applications 2024:281-97. doi: 10.1201/ 9781032634050-15.
- [61] Khare SK, March S, Barua PD, Gadre VM, Acharya UR. Application of data fusion for automated detection of children with developmental and mental disorders: A systematic review of the last decade. Inf Fusion 2023;99:101898. https://doi.org/ 10.1016/j.inffus.2023.101898.
- [62] Li J, Kong X, Sun L, Chen X, Ouyang G, Li X, et al. Identification of autism spectrum disorder based on electroencephalography: A systematic review. Comput Biol Med 2024;170:108075. https://doi.org/10.1016/j.compbiomed.2024.108075.
- [63] Provost B, Lopez BR, Heimerl S. A comparison of motor delays in young children: Autism spectrum disorder, developmental delay, and developmental concerns. J Autism Dev Disord 2007;37:321-8. https://doi.org/10.1007/s10803-006-0170- 6.
- [64] Takahashi N, Harada T, Nishimura T, Okumura A, Choi D, Iwabuchi T, et al. Association of Genetic Risks with Autism Spectrum Disorder and Early Neurodevelopmental Delays among Children without Intellectual Disability. JAMA Netw Open 2020;3:e1921644. https://doi.org/10.1001/ jamanetworkopen.2019.21644.
- [65] Baker BL, Neece CL, Fenning RM, Crnic KA, Blacher J. Mental disorders in five-year-old children with or without developmental delay: Focus on ADHD. J Clin Child Adolesc Psychol 2010;39:492-505. https://doi.org/10.1080/ 15374416.2010.486321.
- [66] Bednarek N, Motte J. Developmental delay and epilepsy. Epileptic Disord 2006;8: S17-21. https://doi.org/10.1684/j.1950-6945.2006.tb00195.x.
- [67] Berg AT, Wusthoff C, Shellhaas RA, Loddenkemper T, Grinspan ZM, Saneto RP, et al. Immediate outcomes in early life epilepsy: A contemporary account. Epilepsy Behav 2019;97:44-50. https://doi.org/10.1016/j.yebeh.2019.05.011.
- [68] Serrallach BL, Groß C, Christiner M, Wildermuth S, Schneider P. Neuromorphological and Neurofunctional Correlates of ADHD and ADD in the Auditory Cortex of Adults. Front Neurosci 2022;16:850529. https://doi.org/ 10.3389/fnins.2022.850529.
- [69] Groen Y, Wijers AA, Mulder LJM, Waggeveld B, Minderaa RB, Althaus M. Error and feedback processing in children with ADHD and children with Autistic Spectrum Disorder: An EEG event-related potential study. Clin Neurophysiol 2008;119: 2476-93. https://doi.org/10.1016/j.clinph.2008.08.004.
- [70] Kovarski K, Malvy J, Khanna RK, Ars`ene S, Batty M, Latinus M. Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect? Transl Psychiatry 2019;9:341. https://doi.org/10.1038/s41398-019-0672-6.
- [71] Slater J, Joober R, Koborsy BL, Mitchell S, Sahlas E, Palmer C. Can electroencephalography (EEG) identify ADHD subtypes? A systematic review Neurosci Biobehav Rev 2022;139:104752. https://doi.org/10.1016/j.neubiorev.2022.104752.
- [72] Zeng K, Kang J, Ouyang G, Li J, Han J, Wang Y, et al. Disrupted brain network in children with autism spectrum disorder. Sci Rep 2017;7:16253. https://doi.org/ 10.1038/s41598-017-16440-z.
- [73] Kikuchi M, Yoshimura Y, Hiraishi H, Munesue T, Hashimoto T, Tsubokawa T, et al. Reduced long-range functional connectivity in young children with autism spectrum disorder. Soc Cogn Affect Neurosci 2015;10:248-54. https://doi.org/10.1093/scan/nsu049.
- [74] Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA. Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord 2013;5: 1-14. https://doi.org/10.1186/1866-1955-5-24.
- [75] Buard I, Rogers SJ, Hepburn S, Kronberg E, Rojas DC. Altered oscillation patterns and connectivity during picture naming in autism. Front Hum Neurosci 2013;7: 742. https://doi.org/10.3389/fnhum.2013.00742.
- [76] Altınkaynak M, Dolu N, Güven A, Pektas¸ F, Özmen S, Demirci E, et al. Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features. Biocybern Biomed Eng 2020;40:927-37. https://doi.org/10.1016/J. BBE.2020.04.006.
- [77] Müller A, Vetsch S, Pershin I, Candrian G, Baschera GM, Kropotov JD, et al. EEG/ ERP-based biomarker/neuroalgorithms in adults with ADHD: Development, reliability, and application in clinical practice. World J Biol Psychiatry 2020;21. https://doi.org/10.1080/15622975.2019.1605198.
- [78] Zhang W, Liu X, Ni A, Li X, Maurer U, Li F, et al. Early visual word processing in children with ADHD: An ERP study. Res Dev Disabil 2024;155:104866. https://doi. org/10.1016/J.RIDD.2024.104866.
- [79] Karabiber Cura O, Akan A, Kocaaslan AS. Detection of Attention Deficit Hyperactivity Disorder based on EEG feature maps and deep learning. Biocybern Biomed Eng 2024;44:450-60. https://doi.org/10.1016/J.BBE.2024.07.003.
- [80] Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med 2011;9:1-16. https://doi.org/10.1186/1741-7015-9-18.
- [81] Shin Y, Hwang S, Lee SB, Son H, Chu K, Jung KY, et al. Using spectral and temporal filters with EEG signal to predict the temporal lobe epilepsy outcome after antiseizure medication via machine learning. Sci Rep 2023;13:22532. https://doi. org/10.1038/s41598-023-49255-2.
- [82] Buyck I, Wiersema JR. Resting electroencephalogram in attention deficit hyperactivity disorder: Developmental course and diagnostic value. Psychiatry Res 2014;216:391-7. https://doi.org/10.1016/j.psychres.2013.12.055.
- [83] Markovska-Simoska S, Pop-Jordanova N. Quantitative EEG in Children and Adults with Attention Deficit Hyperactivity Disorder. Clin EEG Neurosci 2017;48:20-32. https://doi.org/10.1177/1550059416643824.
- [84] Cañigueral R, Palmer J, Ashwood KL, Azadi B, Asherson P, Bolton PF, et al. Alpha oscillatory activity during attentional control in children with Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder (ADHD), and ASD+ ADHD. J Child Psychol Psychiatry 2022;63:745-61. https://doi.org/10.1111/ jcpp.13514.
- [85] Neo WS, Foti D, Keehn B, Kelleher B. Resting-state EEG power differences in autism spectrum disorder: a systematic review and meta-analysis. Transl Psychiatry 2023; 13:389. https://doi.org/10.1038/s41398-023-02681-2.
- [86] Tierney AL, Gabard-Durnam L, Vogel-Farley V, Tager-Flusberg H, Nelson CA. Developmental trajectories of resting eeg power: An endophenotype of autism spectrum disorder. PLoS One 2012;7:e39127. https://doi.org/10.1371/journal.pone.0039127.
- [87] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 32nd International Conference on Machine Learning, ICML 2015, vol. 1, 2015, p. 448-56.
- [88] Nasirigerdeh R, Torkzadehmahani J, Rueckert D, Kaissis G. Kernel Normalized Convolutional Networks for Privacy-Preserving Machine Learning. Proceedings - 2023 IEEE Conference on Secure and Trustworthy Machine Learning, SaTML 2023, 2023, p. 107-18. doi: 10.1109/SaTML54575.2023.00016.
- [89] Ozay M, Okatani T. Training CNNs with normalized kernels. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 2018, p. 3884-91. doi: 10.1609/aaai.v32i1.11624.
- [90] Habib G, Qureshi S. Optimization and acceleration of convolutional neural networks: A survey. Journal of King Saud University - Computer and Information Sciences 2022;34:4244-68. https://doi.org/10.1016/j.jksuci.2020.10.004.
- [91] Alves CL, de Toutain TGL, O, de Carvalho Aguiar P, Pineda AM, Roster K, Thielemann C,, et al. Diagnosis of autism spectrum disorder based on functional brain networks and machine learning. Sci Rep 2023;13. https://doi.org/10.1038/s41598-023-34650-6.
- 92] Chen H, Song Y, Li X. Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD. J Neural Eng 2019;16. https://doi. org/10.1088/1741-2552/ab3a0a.
- [93] Li Y, Yang H, Li J, Chen D, Du M. EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by Grad-CAM. Neurocomputing 2020;415. https://doi.org/10.1016/j. Neucom.2020.07.072.
- [94] Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Müller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol 2014;93:162-6. https://doi.org/10.1016/J.IJPSYCHO.2013.01.008.
- [95] Zhang Q, Luo C, Ngetich R, Zhang J, Jin Z, Li L. Visual Selective Attention P300 Source in Frontal-Parietal Lobe: ERP and fMRI Study. Brain Topogr 2022;35. https://doi.org/10.1007/s10548-022-00916-x.
- [96] Gao W, Huang W, Li M, Gu Z, Pan J, Yu T, et al. Eliminating or Shortening the Calibration for a P300 Brain-Computer Interface Based on a Convolutional Neural Network and Big Electroencephalography Data: An Online Study. IEEE Trans Neural Syst Rehabil Eng 2023;31. https://doi.org/10.1109/TNSRE.2023.3259991.
- [97] Reinke P, Deneke L, Ocklenburg S. Asymmetries in event-related potentials part 1: A systematic review of face processing studies. Int J Psychophysiol 2024;202: 112386. https://doi.org/10.1016/J.IJPSYCHO.2024.112386.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7beda477-c3e5-4983-ae61-bf43ccf95d41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.