PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper-based composites could be widely used in automotive, electronic or electrical industry due to their very promising thermal properties. In the present paper, Cu-AlN metal matrix composites with ceramic volume fractions between 0.1 and 0.4 were fabricated by hot pressing method in vacuum. Dependence of the coefficient of thermal expansion (CTE) and the thermal conductivity (TC) on the chemical composition of composites has been investigated. The measured values of the thermal expansion coefficient have been compared with the analytical models’ predictions. A numerical model based on FEAP 7.5 in 3D space has been used to evaluate the influence of the porosity on the thermal properties (thermal conductivity) of the composite. A fairly good correlation between the FEM results and the experimental measurements has been obtained.
Rocznik
Strony
507--514
Opis fizyczny
Bibliogr. 32 poz., rys., tab., il., wykr.
Twórcy
  • Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, 5B Pawińskiego St., 02-106 Warsaw, Poland
Bibliografia
  • [1] D.D.L. Chung, “Materials for thermal conduction”, AppliedThermal Engineering 21, 1593-1605 (2001).
  • [2] J. Korab, P. Stefanik, S. Kavecky, P. Sebo, and G. Korb, “Thermal conductivity of undirectial copper matrix carbon fibre composites”, Composites A 33, 577-581 (2002).
  • [3] A. Brendel, C. Popescu, C. Leyens, J. Woltersdorf, E. Pippel, and H. Bolt, “SiC-fiber reinforced copper as heat-sink material for fusion applications”, J. Nuclear Materials 329-333, 804-808 (2004).
  • [4] V.K. Lindroos and M.J. Talvitie, “Recent advances in metal matrix composites”, J. Materials Processing Technology 53, 273-284 (1995).
  • [5] K. Hanada, K. Matsuzaki, and T. Sano, “Thermal properties of diamond particle-dispersed Cu composites”, J. MaterialsProcessing Technology 153-154, 514-518 (2004).
  • [6] K. Yoshida and H. Morigami, “Thermal properties of diamond/ copper composite material”, Microelectronics Reliability 44, 303-308 (2004).
  • [7] F. Boey, A.I.Y. Tok, Y.C. Lam, and S.Y. Chew, “On the effects of secondary phase on thermal conductivity of AlN ceramic substrates using a microstructural modeling approach”, MaterialsScience Engineering A 335, 281-289 (2002).
  • [8] J. Tian and K. Shobu, “Hot-pressed AlN-Cu metal matrix composites and their thermal properties”, J Materials Science 39, 1309-1313 (2004).
  • [9] M. Barlak, W. Olesinska, J. Piekoszewski, M. Chmielewski, J. Jagielski, D. Kalinski, Z. Werner, and B. Sartowska, “Ion implantation as a pre-treatment method of AlN substrate for direct bonding with copper”, Vacuum 78, 205-209 (2005).
  • [10] W. Olesinska, D. Kalinski, M. Chmielewski, R. Diduszko, and W. Wlosinski, “Influence of titanium on the formation of a “barrier” layer during joining an AlN ceramic with copper by the CDB technique”, J. Materials Science: Materials in Electronics 17 (10), 781-788 (2006).
  • [11] J. Piekoszewski, W. Olesinska, J. Jagielski, D. Kalinski, M. Chmielewski, Z. Werner, M. Barlak, and W. Szymczyk, “Ion implanted nanolayers in AlN for direct bonding with copper”, Solid State Phenomena 99-100, 231-234 (2004).
  • [12] M. Barlak, W. Olesinska, J. Piekoszewski, Z. Werner, M. Chmielewski, J. Jagielski, D. Kalinski, B. Sartowska, and K. Borkowska, “Ion beam modification of ceramic component prior to formation of AlN-Cu joints by direct bonding process”, Surface & Coatings Technology 201, 8317-8321 (2007).
  • [13] Z. Lindemann, K. Skalski, W. Wlosinski, and J. Zimmerman, “Thermo-mechanical phenomena in the process of friction welding of corundum ceramics and aluminium”, Bull. Pol. Ac.:Tech. 54 (1), 1-8 (2006).
  • [14] J. Songzhe, Z. Hailong, L. Jing-Feng, and J. Shusheng, “TiB2- AlN-Cu functionally graded materials (FGMs) fabricated by spark plasma sintering (SPS) method”, Key Engineering Materials 280-283, 1881-1884 (2005).
  • [15] W. Weglewski, M. Basista, M. Chmielewski, and K. Pietrzak, “Modelling of thermally induced damage in the processing of Cr-Al2O3 composites”, Composites B 43 (2), 255-264 (2012).
  • [16] M. Chmielewski, D. Kalinski, K. Pietrzak, and W. Wlosinski, “Relationship between mixing conditions and properties of sintered 20AlN/80Cu composite materials”, Archives of Metallurgyand Materials 55 (2), 579-585 (2010).
  • [17] D. Kalinski, M. Chmielewski, K. Pietrzak, and K. Choregiewicz, “An influence of mechanical mixing and hot-pressing on properties of NiAl/Al2O3 composite”, Archives of Metallurgy and Materials 57 (3), 694–702 (2012).
  • [18] S. Min, J. Blumm, and A. Lindemann, “A new laser flash method for measurement of the thermophysical properties”, Thermochimica Acta 455, 46–49 (2007).
  • [19] L.Ran-Rong, “Development of high thermal conductivity aluminum nitride ceramic”, J. American Ceramic Society 74, 2242–49 (1991).
  • [20] J. Wang, J.K. Carson, M.F. North, and D.J. Cleland, “A new approach to modelling the effective thermal conductivity of heterogeneous materials”, Int. J. Heat and Mass Transfer 49, 3075–3083 (2006).
  • [21] J. Mihans, S. Ahzi, H. Garmestani, M.A. Khaleel, X. Sun, and B.J. Koeppel, “Modeling of the effective elastic and thermal properties of glass-ceramic solid oxide fuel cell seal materials”, Materials and Design 30, 1667–1673 (2009)
  • [22] Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behaviour of polycrystals”, J. Mechanics and Physics of Solids 10, 343352 (1962)
  • [23] Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behaviour of multiphase materials”, J. Mechanics and Physics of Solids 11, 127–150 (1963)
  • [24] J. Wang, B.L. Karihaloo, and H.L. Duan, “Nano-mechanics or how to extend continuum mechanics to nano-scale”, Bull. Pol. Ac.: Tech. 55 (2), 133–140 (2007).
  • [25] P.S. Turner, “Thermal expansion stresses in reinforced plastics”, J. Research National Bureau of Standards 37, 239–60 (1946).
  • [26] E.H. Kerner, “The elastic and thermo-elastic properties of composite media”, Proc Physics Society Section B 69 (8), 808813 (1956).
  • [27] G. Buonanno and A. Carotenuto, “The effective thermal conductivity of packed beds of spheres for a finite area”, Numerical Heat Transfer, Part A: Applications A 37 (4), 343–357 (2000).
  • [28] R.P.A. Rocha and M.E. Cruz, “Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance”, Numerical Heat Transfer, Part A:Applications A 39 (2), 179–203 (2001).
  • [29] W. Pabst and E. Gregorova, “Effective thermal and thermoelastic properties of alumina, zirconia and alumina–zirconia composite ceramics”, in New Developments in Materials Science Research, ed. B.M. Caruta, pp. 77–137, Nova Science Publishers, New York, 2009.
  • [30] W. Weglewski, M. Chmielewski, D. Kalinski, K. Pietrzak, and M. Basista, “Thermal residual stresses generated during processing of Cr/Al2O3 composites and their influence on macroscopic elastic properties”, Advances in Science and Technology 65, 27–32, (2010).
  • [31] J. Floury, J. Carson, and Q. Tuan Pham, “Modelling thermal conductivity in heterogeneous media with the finite element method”, Food and Bioprocess Technology 1, 161–170 (2008).
  • [32] L. Kwang-Min, O. Dae-Keun, C. Woong-Sub, T. Weissgarber, and B. Kieback, “Thermomechanical properties of AlNCu composite materials by solid state processing”, J. Alloys and Compounds 434–435, 375–377 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7bed4e63-ede6-4e11-adca-3d519f0c8d32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.