PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solution of an inverse kinematics problem using dual quaternions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper proposes a solution to an inverse kinematics problem based on dual quaternions algebra. The method, relying on screw theory, requires less calculation effort compared with commonly used approaches. The obtained kinematic description is very concise, and the singularity problem is avoided. The dual quaternions formalism is applied to the problem decomposition and description. As an example, the kinematics problem of a multi-DOF serial manipulator is considered. Direct and inverse kinematics problems are solved using division into sub-problems. Each new sub-problem proposed is concerned with rotation about two subsequent axes by a given amount. The presented example verifies the correctness and feasibility of the proposed approach.
Rocznik
Strony
351--361
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • Tianjin Key Laboratory for Advanced Mechatronic Systems Design and Intelligent Control, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China
  • Institute of Aeronautics and Applied Mechanics, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland
autor
  • Institute of Automatic Control and Robotics, Faculty of Mechatronics, Warsaw University of Technology, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
  • Tianjin Key Laboratory for Advanced Mechatronic Systems Design and Intelligent Control, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China
Bibliografia
  • [1] An, H.S., Lee, J.H., Lee, C., Seo, T. and Lee, J.W. (2017). Geometrical kinematic solution of serial spatial manipulators using screw theory, Mechanism and Machine Theory 116: 404–418.
  • [2] An, H.S., Seo, T.W. and Lee, J.W. (2018). Generalized solution for a sub-problem of inverse kinematics based on product of exponential formula, Journal of Mechanical Science and Technology 32(5): 2299–2307.
  • [3] Cariow, A., Cariowa, G. and Witczak, M. (2015). An FPGA-oriented fully parallel algorithm for multiplying dual quaternions, Measurement Automation Monitoring 61(7): 370–372.
  • [4] Chang, C., Liu, J., Ni, Z. and Qi, R. (2018). An improved kinematic calibration method for serial manipulators based on POE formula, Robotica 36(8): 1244–1262.
  • [5] Chen, Q., Zhu, S. and Zhang, X. (2015). Improved inverse kinematics algorithm using screw theory for a six-DOF robot manipulator, International Journal of Advanced Robotic Systems 12(10): 1–9.
  • [6] Clifford, W.K. (1882). Mathematical Papers, Macmillan and Company, London.
  • [7] Craig, J.J. (2009). Introduction to Robotics: Mechanics and Control, 3/E, Pearson Education India, Delhi.
  • [8] Ge, W., Chen, L., Wang, X., Xing, E. and Zielinska, T. (2019). Kinematics modeling and analysis of manipulator using the dual quaternion, 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, pp. 750–755, DOI: 10.1109/ICMA.2019.8816603.
  • [9] Ge, W., Yu, X. and Xing, E. (2018). Kinematics modeling and analysis of manipulator based on dual quaternion, Journal of Mechanical Transmission 42(07): 112–117, DOI: 10.16578/j.issn.1004.2539.2018.07.023.
  • [10] Gouasmi, M., Ouali, M. and Brahim, F. (2012). Robot kinematics using dual quaternions, IAES International Journal of Robotics and Automation 1(1): 13–30.
  • [11] Gui, H. and Vukovich, G. (2016). Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort, Nonlinear Dynamics 83(1–2): 597–614.
  • [12] Kenwrigth, B. (2013). Inverse kinematics with dual-quaternions, exponential-maps, and joint limits, International Journal on Advances in Intelligent Systems 6(1): 53–65.
  • [13] Kussaba, H.T.M., Figueredo, L.F.C., Ishihara, J.Y. and Adorno, B.V. (2017). Hybrid kinematic control for rigid body pose stabilization using dual quaternions, Journal of the Franklin Institute: Engineering and Applied Mathematics 354(7): 2769–2787.
  • [14] Mueller, A. (2017). Coordinate mappings for rigid body motions, Journal of Computational and Nonlinear Dynamics 12(2): 1–13.
  • [15] Mukundan, R. (2002). Quaternions: From classical mechanics to computer graphics, and beyond, Proceedings of the 7th Asian Technology Conference on Mathematics, Melaka, Malaysia, pp. 97–105.
  • [16] Murray, R.M. (1994). A Mathematical Introduction to Robotic Manipulation, CRC Press, Inc. Boca Raton, FL.
  • [17] Oezguer, E. and Mezouar, Y. (2016). Kinematic modeling and control of a robot arm using unit dual quaternions, Robotics and Autonomous Systems 77: 66–73.
  • [18] Sariyildiz, E., Cakiray, E. and Temeltas, H. (2011). A comparative study of three inverse kinematic methods of serial industrial robot manipulators in the screw theory framework, International Journal of Advanced Robotic Systems 8(5): 9–24.
  • [19] Sariyildiz, E. and Temeltas, H. (2012). A new formulation method for solving kinematic problems of multiarm robot systems using quaternion algebra in the screw theory framework, Turkish Journal of Electrical Engineering & Computer Sciences 20(4): 607–628.
  • [20] Singh, A., Singla, E., Soni, S. and Singla, A. (2018). Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery, Proceedings of the Institution of Mechanical Engineers H: Journal of Engineering in Medicine 232(1): 12–23.
  • [21] Tan, Q. and Balchen, J.G. (1993). General quaternion transformation representation for robotic application, Proceedings of the IEEE Systems Man and Cybernetics Conference, Le Touquet, France, Vol. 3, pp. 319–324.
  • [22] Vidaković, J.Z., Lazarević, M.P., Kvrgić, V.M., Dančuo, Z.Z. and Ferenc, G.Z. (2014). Advanced quaternion forward kinematics algorithm including overview of different methods for robot kinematics, FME Transactions 42(3): 189–198.
  • [23] Wang, H., Lu, X., Sheng, C., Zhang, Z., Cui, W. and Li, Y. (2018). General frame for arbitrary 3R subproblems based on the POE model, Robotics and Autonomous Systems 105: 138–145.
  • [24] Wang, J.-Y., Liang, H.-Z., Sun, Z.-W., Wu, S.-N. and Zhang, S.-J. (2013). Relative motion coupled control based on dual quaternion, Aerospace Science and Technology 25(1): 102–113.
  • [25] Wang, X., Yu, C. and Lin, Z. (2012). A dual quaternion solution to attitude and position control for rigid-body coordination, IEEE Transactions on Robotics 28(5): 1162–1170.
  • [26] Xiong, G., Ding, Y., Zhu, L. and Su, C.-Y. (2017). A product-of-exponential-based robot calibration method with optimal measurement configurations, International Journal of Advanced Robotic Systems 14(6): 1–11.
  • [27] Yue-sheng, T. and Ai-Ping, X. (2008). Extension of the second Paden–Kahan sub-problem and its application in the inverse kinematics of a manipulator, IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, pp. 379-381, DOI:10.1109/RAMECH.2008.4681401.
  • [28] Zhao, R., Shi, Z., Guan, Y., Shao, Z., Zhang, Q. and Wang, G. (2018). Inverse kinematic solution of 6R robot manipulators based on screw theory and the paden-kahan subproblem, International Journal of Advanced Robotic Systems 15(6): 1–11.
  • [29] Zhu, C. and Zhao, Z. (2019). Research on influence of joint clearance on precision of 3-TPT parallel robot, Mechanical Sciences 10(1): 287–298.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7beb150b-3529-405f-9829-38b3a73eaa23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.