PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Split of mercury between products of coal cleaning versus mercury emissions reduction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article deals with the analysis of the split of mercury present in raw coals between commercial products and wastes in 21 Polish collieries producing hard steam coal (Upper Silesia Coal Basin). The coal cleaning constitutes the first step in the reduction of mercury emissions in coal utilisation (mainly combustion) processes by decreasing the charge of mercury in the commercial products in comparison to the raw coal. The ratio of this reduction depends, first of all, on the technological characteristics of raw coal, as well as on the range of the applied coal cleaning method. The charges of mercury in exploited raw coals are split in coal preparation processes (mainly coal cleaning processes) between commercial products and waste products. The mercury content in commercial products has been analysed together with the emissions from coal combustion processes. In the second case, tools for the reduction of emissions have already been employed. Characteristics of waste products, in particular the mercury content, have been under consideration to a less extent so far. Data presented in the article allows for better, broadened with the waste products, analyses, understanding and assessment of all environmental mercury originated risks, arising from coal production, including coal cleaning. Presented data generate also the need for discussion of such terms like: “mercury reduction in commercial coal products” and “mercury emissions reduction”, as the result of coal cleaning processes.
Rocznik
Strony
193--203
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Central Institute of Mining, Plac Gwarków 1, 40-166 Katowice, Poland
  • Central Institute of Mining, Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
  • BEST AVAILABLE TECHNIQUES (BAT), 2013, Reference Document for the Large Combustion Plants. Draft 1 (June 2013).
  • BIALECKA B., MICHALSKA A., 2012, Mercury content in coal and the mining waste. Prace Naukowe GIG, Gornictwo i Geoinzynieria 3, 73–87.
  • COUCH G.R., 1999, Power from coal where to remove impurities? IEACR/82, London, UK, IEA Coal Research.
  • DAS T.B., PAL S.K., GOURICHARAN T., SHARMA K.K., CHOUDHURY A., 2013, Evaluation of Reduction Potential of Selected Heavy Metals from and Indian Coal by Conventional Coal Cleaning. International Journal of Coal Preparation and Utilization 33, 300–312.
  • DZIOK T., STRUGALA A., ROZWADOWSKI A. GORECKI J., ZIOMBER S., 2014, The variation of the mercury content in hard coal in the cleaning process. Polityka Energetyczna Vol.17, Issue 4, 277–288.
  • FEELEY Th.J., BARNETT W.P., HUCKO R.E., 1994, Advanced Physical coal cleaning for controlling acid rain emissions. Proceedings of the 12th International Coal Preparation Congress, Cracow, Poland, May 23–27. Gordon and Breach Publishers, 241–247.
  • GUANGQIAN Luo, JINGJING Ma, JUN Han, HONG Yao, MINGHOU X, CHENG Zhang, GANG Chen, RAJENDA Gupta, ZHENGHE Xu., 2013, Hg occurrence in coal and its removal before coal utilization. Fuel, 104, 70–76.
  • HUGGINS F.E., SEIDU L.B.A., SHAH N., HUFFMAN G.P., HONAKER R.Q., KYGER J.R., HIGGINS B.L., 2009, Elemental modes of occurrence in an Illinois #6 coal and fractions prepared by physical separation techniques at a coal preparation plant. International Journal of Coal Geology 78, 65–76.
  • LOPEZ-ANTON M. A., DI’AZ-SOMOANO M., GARCI’A, A.B., MARTI’NEZ-TARAZONA M.R., 2006, Evaluation of mercury associations in two coals of different rank using physical separation procedures. Fuel 85, 1389–1395.
  • MASTALERZ M., DROBNIAK A., 2005, Vertical variations of mercury in Pennsylvanian coal beds from Indiana. International Journal of Coal Geology 63, 36– 57.
  • Ochrona Srodowiska – Environment, 2013, Glowny Urzad Statystyczny, Warszawa.
  • OZBAYOGLU G., 2011, Partitioning of major and trace elements of a Turkish lignite with size and density. Physicochem. Probl. Miner. Process. 4, 51-60.
  • OZBAYOGLU G., 2013, Removal of hazardous air pollutants based on commercial coal preparation data. Physicochem. Probl. Miner. Process. 49(2), 621−629.
  • PACYNA J.M., PACYNA E.G. AAS W., 2009, Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmospheric Environment 43, 117–127
  • PACZOSA A., 2014, Mercury emissions to air. Conference “ The mercury issues in Poland in view of the new global regulatory solutions.”. Polish Ministry of the Environment, Warszawa November 20th, 2014 r (in Polish).
  • PASZCZA H., PITURA K., 2014, Hard coal mining in Poland in 2013. Wiadomosci Gornicze 6, 314–324.
  • PAVLISH J.H., SONDREAL E.A., MANN M.D., OLSON E.S., GALBREATH K.C., LAUDAL D.L., BENSON S.A., 2003, Status review of mercury control options for coal-fired power plants. Fuel Processing Technology 82, 89–165.
  • Polish Standards (2014), PN-G-04502:2014-11: Hard coal and lignite – Sampling and preparation of the samples for laboratory tests standard.
  • PYKA I., WIERZCHOWSKI K., 2010a, Technological Conditions of Mercury Content Reduction in Hard Coal Based on the ROM Coal from Several Polish Collieries. Arch. Min. Sci., Vol. 55, 2, 349–371.
  • PYKA I., WIERZCHOWSKI K., 2010b, Issues related to the mercury content in hard coal. Gornictwo i Geoinzynieria. Vol. 34, Issue 4/1,241-250.
  • QUICK W.J., IRONS R.M.A., 2002, Trace elements partitioning during the firing of washed and untreated power stations coals. Fuel 81, 665-657.
  • SLOSS L. L., 2012, Legislation, standards and methods for mercury emissions control. CCC/195. London, UK, IEA Clean Coal Centre.
  • SMOLKA W., CZAPLICKI A., PYKA I., 1999, The cost of decreasing the SO2 emissions in the coal cleaning plants and the flue gas desuplhurisation plants. Karbo, Energochemia, Ekologia 2, 1999.
  • TOOLE-O’NEIL B., TEWALT S.J., FINKELMAN R.B., AKERS D.J., 1999, Mercury concentration in coal – unraveling the puzzle. Fuel 78, 47–54.
  • UNEP (UNITED NATIONS ENVIRONMENTAL PROGRAMME), 2008, The Global Atmospheric Mercury Assessment: Sources, Emissions and Transport. Geneva, Switzerland,
  • UNEP (UNITED NATIONS ENVIRONMENT PROGRAMME), 2010, Process Optimization Guidance for Reducing Mercury Emissions from Coal Combustion in Power Plants. Division of Technology, Industry and Economics (DTIE) Chemicals Branch Geneva, Switzerland.
  • UNEP (UNITED NATIONS ENVIRONMENT PROGRAMME), 2013, Minamata Convention on Mercury (October 2013).
  • WANG WEN-FENG, QIN YONG, WANG JUN-YI, LI JIAN, 2009, Partitioning of hazardous trace elements during coal preparation. Procedia Earth and Planetary Science, 1 838–844.
  • WENFENG WANG, YONG QIN, SHUXUN SANG, BO JIANG, YINGHAI GUO, YANMING ZHU, XUEHAI FU, 2006a, Partitioning of minerals and elements Turing preparation of Taixi coal, China. Fuel 85, 57–67.
  • WENFENG WANG, YONG QIN, CHONGTAO WEI, ZHUANGFU LI, YINGHAI GUO, YANMING ZHU, 2006b, Partitioning of elements and macerals during preparation of Antaibao coal. International Journal of Coal Geology 68, 223–232.
  • WICHLINSKI M., KOBYLECKI R., BIS Z., 2013, The investigation of mercury contents in Polish coal samples. Archives of Environmental Protection, Vol. 39, 2, 141–150.
  • ZAJUSZ-ZUBEK E., KONIECZYNSKI J., 2014, Coal cleaning versus the reduction of mercury and other trace elements’ emissions from coal combustion processes. Archives of Environmental Protection, Vol. 40 1, 115–127.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7be869e8-beb9-4d26-9265-f350b49da3fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.