Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The positivity and absolute stability of a class of nonlinear continuous-time and discrete-time systems with nonpositive linear part are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
247--258
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., wzory
Twórcy
autor
- Białystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
- [1] M. Ait Rami and F. Tadeo: Controller Synthesis for Positive Linear Systems With Bounded Controls. IEEE Transactions on Circuits and Systems, 54(2 ) (2007), 151–155.
- [2] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. SIAM (1994).
- [3] M. Busłowicz: Stability of linear continuous-time fractional order systems with delays of the retarded type. Bull. Pol. Acad. Sci. Tech., 56(4) (2008), 319–324.
- [4] M. Busłowicz: Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders. Bull. Pol. Acad. Sci. Tech., 60(2) (2012), 279–284.
- [5] M. Busłowicz and T. Kaczorek: Simple conditions for practical stability of positive fractional discrete-time linear systems. Int. J. Appl. Math. Comput. Sci., 19(2) (2009), 263–169.
- [6] L. Farina and S. Rinaldi: Positive Linear Systems; Theory and Applications. J. Wiley, New York (2000).
- [7] T. Kaczorek: Absolute stability of a class of positive nonlinear continuous time and discrete-time systems. Archives of Control Sciences, 29(1) (2019), 157–167. DOI: 10.24425/acs.2019.127529.
- [8] T. Kaczorek: Analysis of positivity and stability of fractional discrete-time nonlinear systems. Bull. Pol. Acad. Sci. Tech., 64(3) (2016), 491–494.
- [9] T. Kaczorek: Analysis of positivity and stability of discrete-time and continuous-time nonlinear systems. Computational Problems of Electrical Engineering, 5(1) (2015), 127–130.
- [10] T. Kaczorek: Decentralized stabilization of fractional positive descriptor continuous-time systems. Int. J. Math. Comput. Sci., 28(1), (2017), 135-140.
- [11] T. Kaczorek: Descriptor positive discrete-time and continuous-time non-linear systems. Proc. of SPIE, 9290 (2014).
- [12] T. Kaczorek: Positive 1D and 2D Systems. Springer Verlag, London (2002).
- [13] T. Kaczorek: Positive linear systems with different fractional orders. Bull. Pol. Ac. Sci. Techn., 58(3) (2010), 453–458.
- [14] T. Kaczorek: Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. on Circuits and Systems, 58(7) (2011), 1203–1210.
- [15] T. Kaczorek: Positivity and stability of discrete-time nonlinear systems. IEEE 2nd International Conference on Cybernetics, 156–159 (2015).
- [16] T. Kaczorek: Stability of fractional positive nonlinear systems. Archives of Control Sciences, 25(4) (2015), 491–496. DOI: 10.1515/acsc-2015-0031.
- [17] B. T. Polyak and P. S. Shcherbakov: Superstable Linear Control Systems. I. Analysis. Automation and Remote Control, 63(8) (2002), 1239–1254.
- [18] B. T. Polyak and P. S. Shcherbakov: Superstable Linear Control Systems. II. Design. Automation and Remote Control, 63(11) (2002), 1745–1763.
- [19] Ł. Sajewski: Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays. Conf. MMAR 2017, DOI00: 10.1109/MMAR.2017.8046875.
- [20] Ł. Sajewski: Stabilization of positive descriptor fractional discrete-time linear system with two different fractional orders by decentralized controller. Bull. Pol. Ac.: Tech., 65(5), (2017), 709–714.
- [21] H. Zhang, D. Xie, H. Zhang, and G.Wang: Stability analysis for discrete-time switched systems with unstable subsystems by a mode-dependent average dwell time approach. ISA Transactions, 53 (2014), 1081–1086.
- [22] J. Zhang, Z. Han, H. Wu, and J. Hung: Robust stabilization of discrete-time positive switched systems with uncertainties and average dwell time switching. Circuits Syst. Signal Process., 33 (2014), 71–95.
- [23] W. Xiang-Jun, W. Zheng-Mao, and L. Jun-Guo: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits and Systems-II, Express Briefs, 55(11) (2008), 1178–1182.
Uwagi
EN
1. This work was supported by National Science Centre in Poland under work No. 2014/13/B/ST7/03467.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7be74c68-9674-466f-8be8-252d3a458672