PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation Of Infrared Drying Behaviour Of Spinach Leaves Using ANN Methodology And Dried Product Quality

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of infrared power output and sample mass on drying behaviour, colour parameters, ascorbic acid degradation, rehydration characteristics and some sensory scores of spinach leaves were investigated. Within both of the range of the infrared power outputs, 300–500 W, and sample amounts, 15–60 g, moisture content of the leaves was reduced from 6.0 to 0.1±(0.01) kg water/ kg dry base value. It was recorded that drying times of the spinach leaves varied between 3.5–10 min for constant sample amount, and 4–16.5 min for constant power output. Experimental drying data obtained were successfully investigated by using artificial neural network methodology. Some changes were recorded in the quality parameters of the dried leaves, and acceptable sensory scores for the dried leaves were observed in all of the experimental conditions.
Rocznik
Strony
425--436
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Inonu University, Faculty of Engineering, Department of Chemical Engineering, Malatya, 44069, Turkey
autor
  • Inonu University, Faculty of Engineering, Department of Chemical Engineering, Malatya, 44069, Turkey
Bibliografia
  • 1. AOAC, 1990. Official Methods of Analysis. Association of Official Analytical Chemists, Washington DC.
  • 2. Boeri C., da Silva F.N., Ferreira S.J., Saraiva J., Salvador A., 2011. Predicting the drying kinetics of salted codfish (Gadus Morhua): Semi-empirical, diffusive and neural network models. Int. J. Food Sci. Technol., 46, 509–515. DOI: 10.1111/j.1365-2621.2010.02513.x.
  • 3. Cakmak Y.S., Boyaci I.H., 2011. Quality evaluation of chickpeas using an artificial neural network integrated computer vision system. Int. J. Food Sci. Technol., 46, 194–200. DOI: 10.1111/j.1365-2621.2010.02482.x.
  • 4. Chua K.J., Chou S.K., 2003. Low-cost drying methods for developing countries. Trends Food Sci. Technol., 14, 519–528. DOI:10.1016/j.tifs.2003.07.003.
  • 5. Dadali G., Ozbek, B., 2009. Kinetic thermal degradation of vitamin C during microwave drying of okra and spinach. Int. J. Food Sci. Nutr., 60, 21–31. DOI: 10.1080/09637480701568038.
  • 6. Demirhan E., Ozbek B. 2009. Color change kinetics of microwave-dried basil. Drying Technol., 27, 156–166. DOI:10.1080/07373930802566101.
  • 7. Demirhan E., Ozbek B., 2010. Rehydration kinetics of microwave-dried basil. J. Food Process. Preserv., 34, 664–680. DOI: 10.1111/j.1745-4549.2009.00384.x.
  • 8. Devahastin S., Niamnuy C., 2010. Modelling quality changes of fruits and vegetables during drying: A review. Int. J. Food Sci. Technol., 45, 1755–1767. DOI: 10.1111/j.1365-2621.2010.02352.x.
  • 9. Doymaz I., 2012. Infrared drying of sweet potato (Ipomoea Batatas L.) slices. J. Food Sci. Technol., 49, 760–766. DOI: 10.1007/S13197-010-0217-8.
  • 10. Fernandes F.A.N., Rodrigues S., Law C.L., Mujumdar A.S., 2011. Drying of exotic tropical fruits: A comprehensive review. Food Bioprocess Technol., 4, 163–185. DOI: 10.1007/s11947-010-0323-2.
  • 11. Golden R.M., 1999. Mathematical methods for neural network analysis and design. MIT Press Cambridge, MA.
  • 12. Haykin S., 1999. Neural networks: A comprehensive foundation. Prentice Hall Inc., USA.
  • 13. Karadurmus E., Cesmeci M., Yuceer M., Berber R., 2012. An Artificial Neural Network model for the effects of chicken manure on ground water. Appl. Soft Comput., 12, 494–497. DOI: 10.1016/j.asoc.2011.08.017.
  • 14. Kaya A., Aydin O., Kolayli S., 2010. Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia Deliciosa Planch). Food Bioprod. Process., 88, 165–173. DOI: 10.1016/j.fbp.2008.12.001.
  • 15. Khataee A.R., Dehghan G., Zarei M., Ebadi E., Pourhassan M., 2011. Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae. Chem. Eng. Res. Des., 89, 172–178. DOI: 10.1016/j.cherd.2010.05.009.
  • 16. Kocabiyik H., Tezer D., 2009. Drying of carrot slices using infrared radiation. Int. J. Food Sci. Technol., 44, 953–959. DOI: 10.1111/j.1365-2621.2008.01767.x.
  • 17. Krokida M.K., Maroulis Z.B., 1999. Effect of microwave drying on some quality properties of dehydrated products. drying Technol., 17, 449–466. DOI: 10.1080/07373939908917545.
  • 18. Kumar D.G.P., Hebbar H.U., Ramesh M.N., 2006. Suitability of thin layer models for infrared-hot air-drying of onion slices. LWT Food Sci. Technol., 39, 700–705. DOI: 10.1016/j.lwt.2005.03.021.
  • 19. Lewis M.J., 1996. Physical Properties of Food and Food Processing Systems. Cambridge: Woodhead Publishing Limited, 277–291.
  • 20. Nowak D., Lewicki P.P., 2004. Infrared drying of apple slices. Innovative Food Sci. Emerg. Technol., 5, 353–360. DOI: 10.1016/j.ifset.2004.03.003.
  • 21. Ruiz Celma A., López-Rodríguez F., Cuadros Blázquez F., 2009. Experimental modelling of infrared of drying of industrial grape by-products. Food Bioprod. Process., 87, 247–253. DOI: 10.1016/j.fbp.2008.10.005.
  • 22. Sandu C., 1986. Infrared radiative drying in food engineering: A process analysis. Biotechnol. Progr., 2, 109–119. DOI: 10.1002/btpr.5420020305.
  • 23. Sarimeseli A., 2011. Microwave drying characteristics of coriander (Corianderum Sativum L.) leaves. Energy Convers. Manage., 52, 1449–1453. DOI: 10.1016/j.enconman.2010.10.007.
  • 24. Sarimeseli A., Coskun M.A., Yuceer M., 2014. Modeling microwave drying kinetics of thyme (Thymus Vulgaris L.) leaves using ANN methodology and dried product quality. J. Food Process. Preserv., 38, 558–564. DOI: 10.1111/jfpp.12003.
  • 25. Sharma G.P., Verma R.C., Pathare P.B., 2005. Thin-layer infrared radiation drying of onion slices. J. Food Eng., 67, 361–366. DOI: 10.1016/j.jfoodeng.2004.05.002.
  • 26. Shi J., Pan Z., Mchugh T.H., Wood D., Hirschberg E., Olson D,. 2008. Drying and quality characteristics of fresh and sugar-infused blueberries dries with infrared radiation heating. LWT Food Sci. Technol., 41, 1962–1972. DOI: 10.1016/j.lwt.2008.01.003.
  • 27. Siripatrawan U., Jantawat P., 2009. Artificial Neural Network approach to simultaneously predict shelf life of two varieties of packaged rice snacks. Int. J. Food Sci. Tech., 44, 42–49. DOI: 10.1111/j.1365-2621.2007.01631.x.
  • 28. Soysal Y., Soylemez Z., 2005. Kinetics and inactivation of carrot peroxides by heat treatment. J. Food Eng., 68, 349–356. DOI: 10.1016/j.jfoodeng.2004.06.009.
  • 29. Strumillo C., Kudra F.T., 1986. Drying: Principles, applications and design. New York, NY, Gordon and Breach Science Publishers.
  • 30. Yuceer M., 2010. Artificial Neural Network models for HFCS isomerization process. Neural Comput. Appl., 19, 979–986. DOI: 10.1007/s00521-010-0437-x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7be73df4-8d32-440d-a2f3-af6f20c26d1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.