Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, phenol oxidation in aqueous solution promoted by the effect of the oxidizing agents H2O2, O3 and UV radiation and their synergy in four different advanced oxidation processes (O3, O3/UV, H2O2/O3 and O3/H2O2/UV) were assayed. Studies were performed with a closed-loop hydraulic circuit set up with a relatively high volume of solution (500 cm3) during 90 min of treatment time. Parameters such as concentration for oxidizing species, pH, presence of UV irradiation were evaluated. The resulting degradation efficiencies were evaluated using GC-MS. The agents here used were selected considering their ease of handling and low toxicity, generation of deposited matter or sludge, so a filtration treatment for the analysis of the samples was not required. In all cases, it was observed that with increasing treatment time better degradation efficiencies were obtained. The best results were obtained with the combination of O3/H2O2/UV where up to 95% degradation was attained at pH 9, which is due to active species generated in the process, e.g., O3 and OH˙, on the contaminant. SPE was performed for determining the presence of several by-products, mainly: catechol, resorcinol and hydroquinone, which were identified.
Czasopismo
Rocznik
Tom
Strony
23--38
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
- Tecnológico de Estudios Superiores de Tianguistenco, Carretera Tenango-La Marquesa km 22, Santiago Tianguistenco, Estado de México, C.P. 52650, México
autor
- Instituto Nacional de Investigaciones Nucleares, Plasma Physics Laboratory AP 18-1027,11801 CDMX, México
autor
- Instituto Nacional de Investigaciones Nucleares, Plasma Physics Laboratory AP 18-1027,11801 CDMX, México
- Tecnológico de Estudios Superiores de Tianguistenco, Carretera Tenango-La Marquesa km 22, Santiago Tianguistenco, Estado de México, C.P. 52650, México
autor
- Instituto Nacional de Investigaciones Nucleares, Plasma Physics Laboratory AP 18-1027,11801 CDMX, México
- Instituto Nacional de Investigaciones Nucleares, Plasma Physics Laboratory AP 18-1027,11801 CDMX, México
autor
- Instituto Nacional de Investigaciones Nucleares, Plasma Physics Laboratory AP 18-1027,11801 CDMX, México
Bibliografia
- [1] GODINI H., HASHEMI F., MANSURI L., SARDAR M., HASSANI G., MOHSENI S.M., ALINEJAD A.A., GOLMOHAMMADI S., MOHAMMADI A.S., Water polishing of phenol by walnut green hull as adsorbent: an insight of adsorption isotherm and kinetic, J. Water Reuse Desalin., 2016, 6 (4), 544.
- [2] NAGHAN D.J., AZARI N., MIRZAEI N., VELAYATI A., TAPOUK F.A., ADABI S., PIRSAHEB M., SHARAFI K., Parameters effecting on photocatalytic degradation of the phenol from aqueous solutions in the presence of ZnO nanocatalyst under irradiation of UV-C light, J. Bulg. Chem. Commun. 2015, 47, 14.
- [3] MORADI M., MANSOURI A.M., AZIZI N., AMINI J., KARIMI K., SHARAFI K., Adsorptive removal of phenol from aqueous solutions by copper (cu)-modified scoria powder: process modeling and kinetic evaluation, Desalin. Water Treat., 2016, 57 (1), 11820.
- [4] ZENG Z., ZOU H., LI X., AROWO M., SUN B., CHEN J., CHU G., SHAO L., Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed, Chem. Eng. J., 2013, 229, 404.
- [5] HEYDARI M., DARVISHMOTEVALLI K.K., KARAMI A., VASSEGUIAN Y., AZIZI N., GHAYEBZADEH M., MORARI M., Data for efficiency comparison of raw pumice and manganese-modified pumice for removal phenol from aqueous environments. Application of response surface methodology, Data Brief., 2018, 20, 1942.
- [6] MORADI M., HEYDARI M., DARVISHMOTEVALLI M., KARIMYAN K., GUPTA V.K., VASSEGHIAN Y., SHARAFI H., Kinetic and modeling data on phenol removal by iron-modified scoria powder (FSP) from aqueous solutions, Data Brief., 2018, 20, 957.
- [7] LIOTTA L.F., GRUTTADAURIA M., DI CARLO G., PERRINI G., LIBRANDO V., Heterogeneous catalytic degradation of phenolic substrates. Catalysts activity, J. Hazard. Mater., 2009, 162 (2–3), 588.
- [8] SUZUKI H., ARAKI S., YAMAMOTO H., Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water, J. Water Proc. Eng., 2015, 7, 54.
- [9] BOCZKAJ G., FERNANDES A., Wastewater treatment by means of advanced oxidation processes at basic pH conditions. A review, Chem. Eng. J., 2017, 320, 608.
- [10] SUZUKI H., ARAKI S., YAMAMOTO H., Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water, J. Water Proc. Eng., 2015, 7, 54.
- [11] LOURES C.C.A., ALCÁNTARA M.A.K., FILHO H.J.I., TEIXEIRA A.C.S.C., SILVA F.T., PAIVA T.C.B., SAMANAMUD G.R.L., Advanced oxidative degradation processes: fundamentals and applications, Int. Rev. Chem. Eng., 2013, 5 (12), 102.
- [12] CENGIZ Y.H., DILER K.S.U., Photocatalytic efficiencies of alternate heterogeneous catalysts. Iron modified minerals and semiconductors for removal of an azo dye from solutions, Environ. Prot. Eng., 2018, 44 (1), 5.
- [13] MADDILA S., LAVANYA P., JONNALAGADDA S.B., Degradation, mineralization of bromoxynil pesticide by heterogeneous photocatalytic ozonation, J. Ind. Eng. Chem., 2015, 24, 333.
- [14] SHARMA J., MISHRA I.M., KUMAR V., Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8 2– oxidation systems, J. Environ. Manage., 2015,156 (1), 266.
- [15] YUQI C., XIAOYONG D., QIULING M., HUIXUAN Z., XIUWEN C., XIAOLI L., MINGZHENG X., QINGFENG C., BO L., Kinetics of photoelectrocatalytic degradation of diclofenac using N, S co-doped TiO2 nanocrystallite decorated TiO2 nanotube arrays photoelectrode, Environ. Prot. Eng., 2018, 44 (2), 117.
- [16] GONG P., YUAN H., ZHAI P., XUE Y., LI H., DONG W., MAILHOT G., Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution, Chem. Eng. J., 2015, 277, 97.
- [17] KARIMAEL M., SHARAFI K., MORADI M., GHAFFARI H.R., BIGLARI H ARFAEINIA H., FATTAHI N., Optimization of a methodology for simultaneous determination of twelve chlorophenols in environmental water samples using in situ derivatization and continuous sample drop flow microextraction combined with gas chromatography-electron-capture detection, Anal. Methods, 2017, 9, 2865.
- [18] KUSIC H., KOPRIVANAC N., LONCARIC B.A., Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies, Chem. Eng. J., 2006, 123 (3), 127.
- [19] WANG J.L., XU L.J., Advanced oxidation processes for wastewater treatment. Formation of hydroxyl radical and application, Crit. Rev. Environ. Sci. Technol., 2012, 42, 251.
- [20] VILHUNEN S.H., SILLANPÄÄ M.E.T., Ultraviolet light emitting diodes and hydrogen peroxide in the photodegradation of aqueous phenol, J. Hazard. Mater., 2009, 161 (2–3), 1530.
- [21] YOGESWARY P., YUSOF M.R.M., AMIN N.A.S., Degradation of phenol by catalytic ozonation, Chem. Nat. Res. Eng., 2007, 2, 34.
- [22] PRIMO O., RIVERO I., ORTIZ I., IRABIEN A., Mathematical modelling of phenol photooxidation: kinetics of the process study, Chem. Eng. J., 2007, 134, 23.
- [23] KIDAK R., INCE N.H., Catalysis of advanced oxidation reactions by ultrasound. A case study with phenol, J. Hazard. Mater., 2007, 146, 630.
- [24] DRIJVERS D., VAN LANGENHOVE H., BECKERS M., Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process, Water Res., 1999, 33, 1187.
- [25] FARZADKIA M., DADBAN S.Y., NASSERI S., HOSSEIN M.A., GHOLAMI M., SHAHRYARI A., Catalytic ozonation of phenolic wastewater: Identification and toxicity of intermediates, J. Eng., 2014, ID 520929.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7be532ab-bb12-41a3-bca2-5a14d6276cc5