Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Inconel 718 is a high-strength, high-temperature alloy with a nickel matrix containing elements such as niobium (Nb) and molybdenum (Mo). It exhibits excellent corrosion resistance and high-temperature mechanical properties. It is widely used in the manufacture of critical sealing components. However, there is currently limited research on the welding of ultra-thin Inconel 718 sheets with a thickness of 0.25 mm. To address issues such as deformation and poor fusion during welding, this study proposes a combined approach of finite element simulation and experimental analysis to investigate the effects of pulsed laser welding parameters on the temperature field, weld morphology, and mechanical properties. The optimal process parameters obtained through orthogonal experiments were a laser power of 300 W, a welding speed of 60 mm/s, and a duty cycle of 55%. The results show that, with these parameters, the tensile strength of the weld was 856 MPa, approaching 80% of that of the base material, and the weld morphology was uniform and defect-free. The experimental and finite element simulation results were in good agreement. The microstructure at the weld was compact and uniform, with a reasonable distribution of Laves and δ phases, and no obvious defects were observed. This study provides valuable reference data for designing the actual laser welding process for Inconel 718 thin sheets.
Wydawca
Czasopismo
Rocznik
Tom
Strony
153--170
Opis fizyczny
ibliogr. 38 poz., rys., tab.
Twórcy
autor
- School of Mechanical Engineering, Liaoning University of Technology Jinzhou, China
autor
- School of Mechanical Engineering, Liaoning University of Technology Jinzhou, China
autor
- School of Mechanical Engineering, Liaoning University of Technology Jinzhou, China
autor
- School of Mechanical Engineering, Liaoning University of Technology Jinzhou, China
autor
- School of Mechanical Engineering, Liaoning University of Technology Jinzhou, China
Bibliografia
- [1] Sirignano, W.A., Liu, F., Performance increases for gas-turbine engines through combustion inside the turbine, J. Propuls. Power, 1999, 15(1): 111–118
- [2] Zurfluh, T., Bond, S., A new high temperature exhaust sealing system, SAE Trans., 2007, 116: 613–619
- [3] Special Metals Corporation, INCONEL® Alloy 718 – Technical Bulletin [Internet], Special Metals, Huntington (WV) [cited 2025 Jul 22]. https://www.specialmetals.com/assets/documents/alloys/inconel/inconel-alloy-718.pdf
- [4] Kumar, N., Dhara, S., Masters, I., Das, A., Substituting resistance spot welding with flexible laser spot welding to join ultra-thin foil of Inconel 718 to thick 410 steel, Materials, 2022, 15(9): 3405. doi:10.3390/ma15093405
- [5] Li, W., Zhang, K., Yang, H., Diao, J., Design and optimization of V-shaped metallic sealing ring for automotive exhaust pipe, Lubr. Eng., 2023, 48(7): 159–166, 220
- [6] Ohata, M., Toda, Y., Toyoda, M., Takeno, S., Control of welding distortion in fillet welds of aluminium alloy thin plates, Weld. Int., 1999, 13(12): 967–976
- [7] Hou, J., Li, R., Xu, C., Li, T., Shi, Z., A comparative study on microstructure and properties of pulsed laser welding and continuous laser welding of Al-25Si-4Cu-Mg high silicon aluminum alloy, J. Manuf. Process., 2021, 68: 657–667
- [8] Chai, D., Wu, D., Ma, G., Zhou, S., Jin, Z., Wu, D. The effects of pulse parameters on weld geometry and microstructure of a pulsed laser welding Ni-base alloy thin sheet with filler wire. Metals. 2016; 6(10): 237.
- [9] Sheikhbahaee, H., Mirahmadi, S.J., Pakmanesh, M.R., Asghari, S., Investigating sensitivity to process parameters in pulsed laser micro-welding of stainless steel foils, Opt. Laser Technol., 2022, 148: 107737
- [10] Krolczyk, G., Sedmak, A., Kumar, U., Chattopadhyaya, S., Das, A.K., Pramanik, A., Study of heat-affected zone and mechanical properties of Nd-YAG laser welding process of thin titanium alloy sheet, Nat. Resour. Eng., 2016, 1(2): 51–58
- [11] Li, D., Han, Z., Zhao, P., Dong, Z., Zhao, S., Zhu, R., et al., Laser welding by focusing multi-laser beams, Opt. Express, 2024, 32(13): 23147–23160
- [12] Verhaeghe, G., Hilton, P., The effect of spot size and laser beam quality on welding performance when using high-power continuous wave solid-state lasers, In Proceedings of ICALEO 2005: 24th International Congress on Laser Materials Processing and Laser Microfabrication, AIP Publishing, Melville, NY, 2005
- [13] Saurabh, S.K., Chand, P., Yadav, U.S., Optimizing laser beam welding performance parameters on nimonic 80A superalloy: a study on experimentation, TGRA, and PCA, Soldag. Inspeção, 2024, 29: e2904. doi:10.1590/0104-9224/SI29.04
- [14] Voropaev, A., Stranko, M., Sorokin, A., Logachev, I., Kuznetsov, M., Laser welding of Inconel 718 nickel-based alloy layer-by-layer products, Mater. Today Proc., 2020, 30: 471–477. doi:10.1016/j.matpr.2019.12.032
- [15] Sharif, S.M., Ramji, M., Akiyama, T., Saurabh, S.K., Ganesh, S., Petley, V.U., et al., A study on laser welding of Inconel 718 and evolution of strain field using digital image correlation to estimate the localized properties, Opt. Laser Technol., 2024, 164: 109472. doi:10.1016/j.optlastec.2024.109472
- [16] Uranga, G.U., Oiartzun, M.A., Cabello, M.J., Molpeceres, C., Morales, M., General methodology for laser welding finite element model calibration. Processes, 2024, 12(12): 2687.
- [17] Han, Q., Kim, D., Kim, D., Lee, H., Kim, N., Laser pulsed welding in thin sheets of Zircaloy-4, J. Mater. Process. Technol., 2012, 212(5): 1116–1122
- [18] Baruah, M., Bag, S., Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy, Opt. Laser Technol., 2017, 90: 40–51
- [19] Zhang, Y., Ying, Y., Liu, X., Wei, H., Deformation control during the laser welding of a Ti6Al4V thin plate using a synchronous gas cooling method, Mater. Des., 2016, 90: 931–941
- [20] Chen, J., Chang, Y., Wei, Y., Building ultra-thin Inconel 718 sheet joints using low-frequency PLBW scheme: Weld bead quality, keyhole dynamics, and solidification characteristics, J. Mater. Res. Technol., 2023, 27: 4145–4156
- [21] Li, L., Peng, G., Wang, J., Gong, J., Li, H., Experimental study on weld formation of Inconel 718 with fiber laser welding under reduced ambient pressure, Vacuum, 2018, 151: 140–147
- [22] Zhu, W., Zhao, F., Yin, S., Liu, Y., Yang, R., Effect of tensile deformation on residual stress of GH4169 alloy, Materials, 2021, 14(7): 1773
- [23] Wu, C.L., Yin, H., Huang, Z.H., Optimization of pulsed laser welding parameters for GH4169 nickel-based superalloy, Tool. Technol., 2020, 54(10): 38–42 (in Chinese)
- [24] Zhang, D., Wu, R., Zhang, H., Liu, Z., Numerical simulation of temperature field evolution in the process of laser metal deposition, Chin. J. Lasers, 2015, 42(5): 112–123
- [25] Ghosh, P.S., Sen, A., Chattopadhyaya, S., Sharma, S., Singh, J., Dwivedi, S.P., et al., Prediction of transient temperature distributions for laser welding of dissimilar metals, Appl. Sci., 2021, 11(13): 5829
- [26] Yang, Z., Li, W., Zhang, Y., Song M., Gao Q., Optimization and analysis of surface milling parameters of additive manufacturing maraging steel, Iron Steel., 2024, 59(6): 135–144. Doi:10.13228/j.boyuan.issn0449-749x.20240091
- [27] Cumming, G., Fidler, F., Vaux, D.L., Error bars in experimental biology, J. Cell Biol., 2004, 166(2): 247–251
- [28] Tzeng, Y., Parametric analysis of the pulsed Nd:YAG laser seam-welding process, J. Mater. Process. Technol., 2000, 102(1–3): 40–47
- [29] Liu, T., Mu, Z., Hu, R., Pang, S., Sinusoidal oscillating laser welding of 7075 aluminum alloy: hydrodynamics, porosity formation and optimization, Int. J. Heat. Mass. Transf., 2019, 140: 346–358
- [30] Yan, S, Zhu, Z, Ma, C, Qin, Q.H., Chen, H., Fu, Y.N., Porosity formation and its effect on the properties of hybrid laser welded Al alloy joints, Int. J. Adv. Manuf. Technol., 2019, 104: 2645–2656
- [31] Tadamalle, A.P., Reddy, Y.P., Ramjee, E., Influence of laser welding process parameters on weld pool geometry and duty cycle, Adv. Prod. Eng. Manag., 2013, 8(1): 52
- [32] Stein, F., Leineweber, A., Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties, J. Mater. Sci., 2021, 56(9): 5321–5427
- [33] Wang, L, Cui, R, Li, B, Jia, X., Yao, L.H., Su, Y.Q., et al., Influence of laser parameters on segregation of Nb during selective laser melting of Inconel 718, China Foundry, 2021, 18: 379–388
- [34] Artaza, T., Bhujangrao, T., Suárez, A., Veiga, F., Lamikiz, A., Influence of heat input on the formation of Laves phases and hot cracking in plasma arc welding (PAW) additive manufacturing of Inconel 718, Metals, 2020, 10(6): 771
- [35] Haisheng, Z., Lijia, F., Huan, L., Kaiqin, D., Effect of hot isostatic pressing on microstructure and high temperature properties of GH4169 alloy formed by selective laser melting, J. Aeronaut. Mater., 2024, 44(1): 44–50. (in Chinese)
- [36] Kontis, P., Chauvet, E., Peng, Z., He, J., da Silva, A.K., Raabe, D., et al., Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys, Acta Mater., 2019, 177: 209–221
- [37] Sharma, S.K., Biswas, K., Nath, A.K., Manna, I., Majumdar, J.D., Microstructural change during laser welding of Inconel 718, Optik, 2020;218:165029
- [38] Liang, R., Luo, Y., Study on weld pool behaviors and ripple formation in dissimilar welding under pulsed laser, Opt. Laser Technol., 2017, 93: 1–8
- 153—170 Bibliogr. 38 poz., rys., tab.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7be18c46-f3fa-44cc-9af3-54e507865197
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.